Let $ n \geq 4$ be a fixed positive integer. Given a set $ S = \{P_1, P_2, \ldots, P_n\}$ of $ n$ points in the plane such that no three are collinear and no four concyclic, let $ a_t,$ $ 1 \leq t \leq n,$ be the number of circles $ P_iP_jP_k$ that contain $ P_t$ in their interior, and let \[m(S)=a_1+a_2+\cdots + a_n.\]Prove that there exists a positive integer $ f(n),$ depending only on $ n,$ such that the points of $ S$ are the vertices of a convex polygon if and only if $ m(S) = f(n).$
Problem
Source: IMO Shortlist 2000, C3
Tags: geometry, combinatorics, counting, combinatorial geometry, IMO Shortlist
03.07.2009 09:42
$ f(n) = 2.(_4^n)$
03.07.2009 23:15
It is strange to see such an easy and evident problem in IMO SL.
25.12.2010 07:45
We claim that the function $f(n)=2 \binom{n}{4}$ satisfies the requirements. Let the score $s(a,b,c,d)$ of the four points $P_a$, $P_b$, $P_c$ and $P_d$ be the number of points $P_i$ where $i \in \{a,b,c,d \}$ such that $P_i$ is properly contained in the circle passing through the remaining three points. Observe that \[m(S) = \sum_{1 \le a<b<c<d \le n} s(a,b,c,d)\] First we prove the following lemma. Lemma 1. The score of a convex quadrilateral $2$. Proof. Let the vertices of the convex quadrilateral be denoted as $A, B, C$ and $D$. We have that point $D$ lies within the circumcircle of $\triangle{ABC}$ if and only if \[\angle{ABC} > 180 - \angle{ADC} \quad \Leftrightarrow \quad \angle{ABC} + \angle{ADC} > 180\] Therefore if $D$ lies within the circumcircle of $\triangle{ABC}$, it also follows by symmetry that $B$ lies within the circumcircle of $\triangle{ADC}$. If not, then since the sum of the interior angles of $ABCD$ is $360$, \[\angle{ABC} + \angle{ADC} < 180 \quad \Rightarrow \quad \angle{BAD} + \angle{ACD} > 180\] Therefore $A$ lies within the circumcircle of $\triangle{BCD}$ and $C$ lies within the circumcircle of $\triangle{ABD}$. In both cases, the score of $ABCD$ is equal to $2$. Lemma 2. The score of a concave quadrilateral is $1$. Proof. Let $ABCD$ denote the concave quadrilateral. Without the loss of generality, let $A$ be such that interior angle $\angle{BAC} > 180$. It follows that $A$ lies in the interior of triangle $\triangle{BCD}$. Therefore, the circumcircle of $\triangle{BCD}$ contains $A$. However, none of the remaining three circles passing through three of the points $A, B, C$ and $D$ contain the remaining point. Hence the score of $ABCD$ is equal to $1$. If Direction. If the vertices of $S$ form a convex $n$-gon, then each quadrilateral formed by four distinct points in $S$ is a convex quadrilateral and therefore \[m(S) = \sum_{1 \le a<b<c<d \le n} s(a,b,c,d) = 2 \binom{n}{4}\] Only If Direction. If the vertices of $S$ form a concave $n$-gon, then at least one of the quadrilaterals formed by four distinct points in $S$ is a concave quadrilateral and therefore \[m(S) = \sum_{1 \le a<b<c<d \le n} s(a,b,c,d) < 2 \binom{n}{4}\] The function $f(n)=2 \binom{n}{4}$ therefore satisfies that $m(S)=f(n)$ if and only if the points in $S$ are the vertices of a convex polygon.
07.01.2016 18:19
Lemma Every quadrilateral $S$ satisfies $m(S) \le 2$ with equality if and only if it is convex, Proof:If a quadrilateral $ABCD$ is convex then one out of $\angle{ABC}+\angle{ADC}$ and $\angle{DAB}+\angle{DCB}$ is greater than $\pi$ and the other is less than $\pi$.This implies $m(S)=2$.One the other hand if it is concave then clearly $m(S)=1$ Back to our main problem.If S forms a convex polygon then every quadrilateral $P_{i}P_{j}P_{k}P_{l}$ contributes $1$ to two of $a_{i},a_{j},a_{k}$ and $a_{l}$ (from the lemma) and thus contributes two to $m(S)$.This immediately implies $f(n)=2\binom{n}{4}$ Now let $m(S)=f(n)=2\binom{n}{4}$.Each quadrilateral $P_{i}P_{j}P_{k}P_{l}$ contributes atmost $2$ to $f(n)$ and thus $m(S) \le 2\binom{n}{4}$.As there is equality,we have that each quadrilateral contributes exactly $2$ to $f(n)$,hence from the lemma every quadrilateral is convex,implying that $S$ forms a convex polygon.
12.08.2019 02:58
Note that given any 4 points, they add 2 to the count if their convex hull is a quadrilateral, and 1 otherwise. So, $f(n)=2\binom{n}{2}$, with equality achieved iff all quadruplets of points form convex quadrilaterals. However, if there exists a point $P_i$ inside the convex hull $Q_1,Q_2,\ldots,Q_k$, then it must be in one of the triangles $Q_1Q_2Q_3$, $Q_1Q_3Q_4,\ldots Q_1Q_{k-1}Q_k$, which cover the convex hull. So, there exist 4 points whose convex hull is a triangle. Therefore, the only way equality is reached is if all points are on the convex hull, as desired.
27.06.2020 01:31
The key idea is to consider four-tuples. Lemma: If $ABCD$ is a non-cyclic convex quadrilateral, $m(ABCD) = 2$. Proof: Suppose $ABCD$ is convex and non-cyclic. Note that $\angle ABC + \angle ADC \neq \angle BCD + \angle BAD \neq 180^\circ$. Hence, exactly one of these two sums is greater than $180^\circ$. WLOG, suppose $\angle ABC + \angle ADC > 180^\circ$ and $\angle BCD + \angle BAD < 180^\circ$. Since $\angle ABC > 180^\circ - \angle ADC$ it follows that $B$ lies within $(ADC)$. Similarly, $D$ lies within $(ABC)$. Meanwhile, since $\angle BCD < 180^\circ - \angle BAD$, it follows that $A$ does not lie within $(BCD)$, and similarly, $C$ does not lie within $(ABD)$. This implies that $m(ABCD) = 2$, proving the lemma. $\blacksquare$ Lemma: If $ABCD$ is a concave quadrilateral, $m(ABCD) = 1$. Proof: Say $\angle BAD > 180^\circ$. Since $A$ and $C$ both lie on the same side of $\overline{BD}$, and $\angle BCD < \angle BAD$, it follows that $C$ does not lie within $(ABD)$, while $A$ lies within $(BCD)$. Meanwhile, since $\angle ABC + \angle ADC < 180^\circ$, by the same argument as in the previous lemma we find that $B$ does not lie within $(ACD)$ and that $D$ does not lie within $(ABC)$. Hence, $m(ABCD) = 1$. $\blacksquare$ We now return to the given problem. We claim that $m(S) \leq 2\binom{n}{4}$, and that equality holds iff the points of $S$ form a convex quadrilateral. Indeed, as no four points in $S$ are concyclic, we have \begin{align*} m(S) &= \sum_{1 \leq w < x < y < z \leq n} m(P_wP_xP_yP_z) \\ &\leq \sum_{1 \leq w < x < y < z \leq n} 2 \\ &\leq 2\binom{n}{4}. \end{align*}Equality holds here iff each of the quadrilaterals $P_wP_xP_yP_z$ is convex, which occurs iff the points of $S$ form a cyclic quadrilateral. This completes the proof. $\Box$
19.01.2022 01:45
Rather easy for a C3. All angles are in degrees. Claim: Suppose $Q$ consists of four points $A,B,C,D$. Then $m(Q)$ is $2$ if $A,B,C,D$ form a convex quadrilateral and $1$ otherwise. Proof. Notice that if $A,B,C,D$ form a convex quadrilateral, then $D$ appears inside the circumcircle of $ABC$, $\angle D$ must be greater than $180-\angle B$, which is equivalent to $\angle B + \angle D >180$. Since exactly one opposite pair of angles sum to greater than $180$ degrees, there will be exactly two points that are contained in the circumcircle of the other three. If $A,B,C,D$ are not convex, WLOG let $A,B,C$ be the convex hull. Then it is clear that the only point that is contained in the circumcircle of the other three is $D$. $\blacksquare$ The key step is to notice that $$m(S)=\sum_{1\le a<b<c<d\le n} m\left(\{P_a,P_b,P_c,P_d\}\right)$$because both quantities count the amount of ordered pairs containing a single point of $S$ and a set of three points in $S$, with all four points distinct, such that the single point is inside the circumcircle of the three points. Using our claim, $m(S)$ must be equal to twice the number of four-point subsets of $S$ that consist of points forming a convex quadrilateral plus the four-point subsets of $S$ that do not. Moreover, every subset of four points form a convex quadrilateral iff $S$ does, so $m(S)=2\binom{n}{4}$ iff $S$ forms a convex quadrilateral. We are done.
30.12.2022 17:14
Let $m(\{a,b,c,d\})$ be the number $m(S)$ for the quadrilateral $P_aP_bP_cP_d.$ It is easy to see that $m(S)$ is the sum of $m(\{a,b,c,d\})$ for all choices of subset $\{a,b,c,d\} \subseteq S$. Note that $(P_aP_bP_c)$ contains $P_d$ if only $P_d$ lies inside of the angle $P_aP_bP_c$ and $\angle P_b+\angle P_d> 180^\circ.$ Clearly, when $P_aP_bP_cP_d$ then $m(a,b,c,d)=2$ and when it is nonconvex $m(a,b,c,d)=1$. Therefore, $m(S)=2\tbinom{n}4$ if and only if $S$ is convex.
05.05.2024 08:29
Note that by swapping the order of summation, $m(S)$ is equal to the number of quadruples of points $(A,B,C,D)$ where $D$ is inside $(ABC)$ and $A,B,C$ are unordered. Claim: Each set of 4 points contributes $2$ if they are convex, and $1$ if they are not. If $ABCD$ is convex and non-cyclic, then we either have $\angle A+\angle C>180$ or $\angle B+\angle D>180$ but not both. However, since $A$ is inside $(BCD)$ if and only if $\angle A+\angle C>180$, etc, the convex quadriateral contributes $2$. If $D$ is inside $\triangle ABC$, then $D$ will be inside $(ABC)$ but nothing else works. Thus, the maximum possible value of $m(S)$ is $2{n\choose 4}$, with equality if and only if each quadrilateral is convex, which is the same as saying the entire set is convex. We are done as $f(n)=2{n\choose 4}$.
05.05.2024 16:55
For any four points $S'=\{P_a,P_b,P_c,P_d\}$ count the value $m(S')$. Notice this is either $2$ if the convex hull is a quadrilateral (i.e. the points form a convex polygon) and $1$ if the convex hull is a triangle (i.e. there is an interior point). Clearly $f(n)$ is the sum of $m(S')$ over all such $S'$. Hence the maximum occurs if every convex hull of four points is a quadrilateral. If the points of $S$ are the vertices of a convex polygon this occurs. If the points of $S$ are not the vertices of a convex polygon then triangulate the convex hull. Any interior point is contained in a triangle and for these four points we have $m(S')=1$. $\blacksquare$
29.12.2024 04:27
storage