Problem

Source: Original RMM 2019 P6

Tags: polynomial, algebra, contest problem, multivariate polynomial



Let $P(x)$ be a nonconstant complex coefficient polynomial and let $Q(x,y)=P(x)-P(y).$ Suppose that polynomial $Q(x,y)$ has exactly $k$ linear factors unproportional two by tow (without counting repetitons). Let $R(x,y)$ be factor of $Q(x,y)$ of degree strictly smaller than $k$. Prove that $R(x,y)$ is a product of linear polynomials. Note: The degree of nontrivial polynomial $\sum_{m}\sum_{n}c_{m,n}x^{m}y^{n}$ is the maximum of $m+n$ along all nonzero coefficients $c_{m,n}.$ Two polynomials are proportional if one of them is the other times a complex constant. Proposed by Navid Safaie