For an infinite sequence $a_1, a_2,. . .$ denote as it's first derivative is the sequence $a'_n= a_{n + 1} - a_n$ (where $n = 1, 2,..$.), and her $k$- th derivative as the first derivative of its $(k-1)$-th derivative ($k = 2, 3,...$). We call a sequence good if it and all its derivatives consist of positive numbers. Prove that if $a_1, a_2,. . .$ and $b_1, b_2,. . .$ are good sequences, then sequence $a_1\cdot b_1, a_2 \cdot b_2,..$ is also a good one. R. Salimov
Problem
Source: Tournament of Towns 2020 oral p4 (15 March 2020)
Tags: Sequence, recurrence relation, positive real, algebra