Let $k,m,n$ be natural numbers such that $m+k+1$ is a prime greater than $n+1$. Let $c_s=s(s+1)$. Prove that \[(c_{m+1}-c_k)(c_{m+2}-c_k)\ldots(c_{m+n}-c_k)\] is divisible by the product $c_1c_2\ldots c_n$.
Problem
Source: IMO LongList 1967, Great Britain 1
Tags: number theory, Divisibility, binomial coefficients, IMO, IMO 1967
16.12.2004 20:05
Please post your solutions. This is just a solution template to write up your solutions in a nice way and formatted in LaTeX. But maybe your solution is so well written that this is not required finally. For more information and instructions regarding the ISL/ILL problems please look here: introduction for the IMO ShortList/LongList project and regardingsolutions
18.12.2005 19:17
We have that $c_1c_2c_3...c_n=n!(n+1)$ and we have that $c_a-c_b=a^2-b^2+a-b=(a-b)(a+b+1)$ So we have that $(c_{m+1}-c_k)(c_{m+2}-c_k)\ldots(c_{m+n}-c_k)=\frac{(m+n-k)!}{(m-n)!}\frac{(m+n+k+1)!}{(m+k+1)!}$ We have to show that: $\frac{(c_{m+1}-c_k)(c_{m+2}-c_k)\ldots(c_{m+n}-c_k)}{n!(n+1)!}=\frac{(m+n-k)!}{(m-n)!n!}\frac{(m+n+k+1)!}{(m+k)!(n+1)!} \frac 1{m+k+1}$ is an integer But $\frac{(m+n-k)!}{(m-n)!n!}=\binom {m+n-k}n$ is an integer and ${(m+n+k+1)!}{(m+k)!(n+1)!} \frac 1{m+k+1}=\binom {m+n+k+1}{n+1}\frac 1{m+k+1}$ is an integer because $m+k+1|m+n+k+1!$ but does not divide neither $n+1!$ nor $m+n!$ because $m+k+1$ is prime and it is greater than $n+1$ (given in the hypotesis) and $m+n$
18.12.2005 21:50
Simo_the_Wolf wrote: We have that $c_1c_2c_3...c_n=n!(n+1)$ I think you forgot a $! \Rightarrow c_1c_2c_3...c_n=n!(n+1)!$