Let $P$ be a polynomial with integer coefficients of degree $d$. For the set $A = \{ a_1, a_2, ..., a_k\}$ of positive integers we denote $S (A) = P (a_1) + P (a_2) + ... + P (a_k )$. The natural numbers $m, n$ are such that $m ^{d+ 1} | n$. Prove that the set $\{1, 2, ..., n\}$ can be subdivided into $m$ disjoint subsets $A_1, A_2, ..., A_m$ with the same number of elements such that $S (A_1) = S(A_2) = ... = S (A_m )$.