Denote by $ M$ midpoint of side $ BC$ in an isosceles triangle $ \triangle ABC$ with $ AC = AB$. Take a point $ X$ on a smaller arc $ \overarc{MA}$ of circumcircle of triangle $ \triangle ABM$. Denote by $ T$ point inside of angle $ BMA$ such that $ \angle TMX = 90$ and $ TX = BX$. Prove that $ \angle MTB - \angle CTM$ does not depend on choice of $ X$. Author: Farzan Barekat, Canada
Problem
Source: ISL 2007, G2, AIMO 2008, TST 1, P3, Ukrainian TST 2008 Problem 1
Tags: geometry, circumcircle, reflection, cyclic quadrilateral, IMO Shortlist, geometry solved, mixtilinear incircle
05.06.2008 13:41
A not very nice solution uses coordinates: taking origin at M(0,0), C(2a,0),B(-2a,0), A(0,2h) then let X(p,q) with p>0 and q>0 because the minor arc MA is in the first quadrant. If T(u,v) then up+vq=0 because MX is perpendicular to MT. After a lot of computations one get tan(MTB-CTM) = a/h, which in fact does not depends on X(p,q).
13.07.2008 04:01
Denote E be the midpoint of BT, then the quadrilateral XMET inscribed the circle whose diameter is XT. Since ME || CT, $ \angle MTB - \angle MTC = \angle MTE - \angle EMT = \angle MXE - \angle EXT = \angle MXE - \angle EXB = \angle MXB = \angle MAB$
26.06.2009 08:18
Let the perpendiculers from $ B$ and $ C$ to $ XM$ and $ TM$ respectively intersect at $ P$. $ \angle BPC = 90^0\implies BM = CM = PM$. So $ P$ is the reflection of $ C$ at $ TM$ and of $ B$ at $ XM$. $ XT = XB = XP\implies$ $ X$ is the circumcenter of $ TBP$. $ \angle MTB - \angle CTM = \angle MTB - \angle PTM = \angle BTP = \frac {1}{2}\angle BXP =$ $ = \angle BXM = \angle BAM\ \ \text{(Const.)}$
Attachments:

24.12.2011 16:54
Νotice here that the condition AB=AC is absolutely redundant.... Hence the problem can be generalized to any triangle ABC,using the same method of proof as mr.danh's idea,which is also the same as mine. Cheers, Nick
29.02.2012 01:23
Sorry for the revival; why is XMET cyclic in mr.danh's solution? mr.danh wrote: then the quadrilateral XMET inscribed the circle whose diameter is XT
29.02.2012 05:14
AwesomeToad wrote: Sorry for the revival; why is XMET cyclic in mr.danh's solution? $TX=BX$ so, $\triangle TXB$ is isosceles since $E$ is the midpoint $XE$ is the median as well as altitude of the triangle So, $\angle TEX=90^\circ$ it is given $\angle TMX=90^\circ$ So, $TEMX$ is cyclic with $TX$ being the diameter
04.07.2013 08:08
02.02.2015 16:13
Let $C' $ be the symetrical of $C$ wrt $TM$ and $L=AM\cap TC'$ and $Y$ the reflexion of $X$ wrt the midpoint of $AB$. and $E$ the midpoint of $TB$ then $ \angle{MTB}-\angle{CTM} = \angle LTB$ it is enough to show that $ATLB$ is cyclic to conclude that $\angle{MTB}-\angle{CTM} = \angle MAB$ we have: $\angle ALB=\frac{\pi}{2}-\angle TMB - \angle MTC = \frac{\pi }{2}- \angle AYX -\angle TME = \frac{\pi}{2}-\angle AYX -\frac{\angle TXB}{2}=\angle XBT -\angle ABX =\angle ABT $ Hence $ATBL$ is cyclic which leads to \[ \angle{MTB}-\angle{CTM}= \angle LTB = \angle MAB \]
27.01.2016 06:18
We will prove the result for an arbitrary $\triangle ABC.$ Define $\Gamma \equiv \odot(X, XB)$ and $\omega \equiv \odot(ABM).$ Let $S$ be the reflection of $T$ in $M$ and let $MT$ meet $\omega$ for a second time at $Y.$ [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(15cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = 937.3756443093395, xmax = 1122.3822298074242, ymin = 958.746170568615, ymax = 1051.0863181805378; /* image dimensions */ pen qqwuqq = rgb(0.,0.39215686274509803,0.); draw(arc((981.6398411686986,1019.9779690940252),4.894354113705946,-41.70511190447346,-22.045779161991184)--(981.6398411686986,1019.9779690940252)--cycle, qqwuqq); draw(arc((1036.6505840120194,970.956380225791),4.894354113705946,138.29488809552655,157.95422083800884)--(1036.6505840120194,970.956380225791)--cycle, qqwuqq); draw(arc((976.8060711531035,995.1907717416409),4.894354113705946,78.96519747630964,98.62453021878137)--(976.8060711531035,995.1907717416409)--cycle, qqwuqq); Label laxis; laxis.p = fontsize(10); xaxis(xmin, xmax, Ticks(laxis, Step = 10., Size = 2, NoZero),EndArrow(6), above = true); yaxis(ymin, ymax, Ticks(laxis, Step = 10., Size = 2, NoZero),EndArrow(6), above = true); /* draws axes; NoZero hides '0' label */ /* draw figures */ draw((976.8060711531035,995.1907717416409)--(1041.4843540276145,995.7435775781753)); draw(circle((992.8090020683957,1014.8258301910363), 25.330403040433268), linetype("2 2") + blue); draw(circle((1013.9145017344058,1000.8191459995926), 37.532841845441226), linetype("2 2") + blue); draw((1036.6505840120194,970.956380225791)--(971.7035024023855,1028.83251438248)); draw((976.8060711531035,995.1907717416409)--(981.6398411686986,1019.9779690940252), red); draw((1041.4843540276145,995.7435775781753)--(981.6398411686986,1019.9779690940252), red); draw((976.8060711531035,995.1907717416409)--(1036.6505840120194,970.956380225791), red); draw((1036.6505840120194,970.956380225791)--(1041.4843540276145,995.7435775781753), red); draw((971.7035024023855,1028.83251438248)--(976.8060711531035,995.1907717416409)); /* dots and labels */ dot((990.,1040.),linewidth(3.pt) + dotstyle); label("$A$", (990.7241041487343,1041.9713196788784), NW * labelscalefactor); dot((976.8060711531035,995.1907717416409),linewidth(3.pt) + dotstyle); label("$B$", (974.5727355735047,993.1697945016816), SW * labelscalefactor); dot((1041.4843540276145,995.7435775781753),linewidth(3.pt) + dotstyle); label("$C$", (1042.4411126168939,993.1697945016816), SE * labelscalefactor); dot((1009.145212590359,995.4671746599081),linewidth(3.pt) + dotstyle); label("$M$", (1008.5069240951992,992.1909236789404), S * labelscalefactor); label("$\omega$", (960,1010), NE * labelscalefactor,blue); dot((1013.9145017344058,1000.8191459995926),linewidth(3.pt) + dotstyle); label("$X$", (1015.5221649915111,1000.1850353979937), E * labelscalefactor); dot((971.7035024023855,1028.83251438248),linewidth(3.pt) + dotstyle); label("$Y$", (967.3520911855517,1029.8774503544778), NE * labelscalefactor); label("$\Gamma$", (1042,1032), NE * labelscalefactor,blue); dot((981.6398411686986,1019.9779690940252),linewidth(3.pt) + dotstyle); label("$T$", (981.6513640015929,1022.2730164414478), N * labelscalefactor); dot((1036.6505840120194,970.956380225791),linewidth(3.pt) + dotstyle); label("$S$", (1037.7099036403113,967.3928628361625), SE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] Note that $BTCS$ is a parallelogram because its diagonals bisect one another. Hence, $\measuredangle CTM = \measuredangle BST.$ Meanwhile, $S \in \Gamma$ because $XM$ is the perpendicular bisector of $\overline{ST}.$ Then since $\measuredangle YBX = \measuredangle YMX = 90^{\circ}$, it follows that $YB$ is tangent to $\Gamma.$ Thus, the Alternate Segment Theorem yields $\measuredangle BST = \measuredangle YBT.$ Hence, \begin{align*} \measuredangle MTB - \measuredangle CTM = \measuredangle MTB - \measuredangle YBT = \measuredangle BYT. \end{align*}But clearly $\measuredangle BYT = \measuredangle BYM = \measuredangle BAM$ is fixed, as desired. $\square$
11.04.2016 19:04
Here is an analytic solution: We use complex numbers and set $(ABM)$ to be the unit circle. Furthermore, let $a=-1,b=1$. Then it is clear that $c=2m-1$. Now since $TM \perp XM$, we have \[\frac{t-m}{x-m}=-\frac{\bar t - \frac{1}{m}}{\frac{1}{x}-\frac{1}{m}} \implies t-m=mx \bar t - x \implies \bar t = \frac{t-m+x}{mx}\]Now since $XT=XB$, we have \[(t-x)(\bar t - \tfrac{1}{x})=(1-x)(1-\tfrac{1}{x}) \implies t \bar t - \frac{t}{x}- \bar t x + x +\frac{1}{x} -1=0\]Plugging in our first equation into our second, we get \[t\left(\frac{t-m+x}{mx}\right)-\frac{t}{x}-\left(\frac{t-m+x}{m}\right) + x + \frac{1}{x} -1=0 \implies t^2 - 2mt + (m-1)x^2+m=0\]Now let $r$ be the root that lies within angle $AMB$ and call the other root $s$. It is clear that these roots are reflections about $M$ (and thus $r,m,s$ are collinear), so now consider the following complex number which has argument $\angle MTB - \angle CTM$ \[\frac{\frac{s-r}{1-r}}{\frac{2m-1-r}{s-r}}=-\frac{(s-r)^2}{(1-r)(1-s)}=\frac{4m^2-4((m-1)x^2+m)} {(m-1)(1-x^2)}=\frac{4(m-x^2)}{1-x^2}\]Now notice that since $|x|=1$, $x^2$ lies on the unit circle, and so we see that the argument of this complex number is $\angle MXB=\angle MAB$ which is independent of $X$, as desired. $\Box$
18.05.2016 04:51
We do not use complex numbers
When I started working on this problem, I misread it as $TB=TX$. If we characterize $T$ as such, can we find any interesting properties of this new configuration? All my progress so far for this configuration is rather trivial.
18.08.2016 23:15
26.07.2017 14:10
My solution:(similar MStang and mr.danh) Let $Q$ be the midpoint of $BT,$ then $\angle XQT =90,$ also $\angle XMT=90\to XMQT$ is cyclic. Also $MQ$ is the midline of $\triangle CBT\to MQ\parallel CT.$ Then $\angle MTB-\angle CTM=\angle MXQ-\angle QMT=\angle MXQ-\angle QXT=\angle MXQ-\angle BXQ=\angle MXB=\angle MAB.$ As desired.
10.11.2017 13:14
I generally don't like geometry, but the locus of $T$ as $X$ varies on $\omega_{ABM}$ is (showed in black) a cute shape, which surprisingly is independent of $\angle BAM$: [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(27.1cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.3, xmax = 22.8, ymin = -5.76, ymax = 6.3; /* image dimensions */ pen ffxfqq = rgb(1.,0.4980392156862745,0.); /* draw figures */ draw(circle((6.38,1.), 4.011234224026315), linewidth(2.) + blue); draw((9.02,4.02)--(3.74,-2.02), linewidth(2.) + green); draw((3.74,-2.02)--(14.408602941635356,-1.9233120679801736), linewidth(2.) + green); draw((9.02,4.02)--(9.074301470817678,-1.9716560339900866), linewidth(2.) + green); draw((xmin, -0.5299145299145296*xmin + 4.380854700854699)--(xmax, -0.5299145299145296*xmax + 4.380854700854699), linewidth(2.) + linetype("2 2") + ffxfqq); /* line */ draw(circle((9.924343193909214,-0.8781989574561639), 6.288863996049319), linewidth(2.) + linetype("2 2") + blue); /* locus construction */ draw((3.666532459319288,1.7158227254556473)^^(5.685493539125569,0.9999999930549354)--(5.6854935026018385,0.9999999861098701)--(5.685493429554378,0.9999999722197372)--(5.685493283459452,0.9999999444394625)--(5.685492991269605,0.9999998888788786)--(5.685492406889907,0.9999997777575703)--(5.685491238130497,0.9999995555143926)--(5.685488900611638,0.9999991110257929)--(5.685484225573751,0.9999982220396174)--(5.685474875497324,0.9999964440313623)--(5.685456175341818,0.9999928878712353)--(5.685418775020227,0.9999857749765105)--(5.685343974334768,0.9999715468891729)--(5.685194372795103,0.9999430815228921)--(5.6848951690436405,0.9998861140234769)--(5.684296758875018,0.999772031953789)--(5.683099928057738,0.9995432795034654)--(5.680706225965126,0.9990834211396069)--(5.675918671647202,0.9981542888147239)--(5.66634305611945,0.9962583479987558)--(5.647190547285527,0.9923156543167926)--(5.608886427386223,0.9838262051167292)--(5.532330009850903,0.9644252800129192)--(5.45593496758696,0.9417860264693532)--(5.379812586571335,0.9159008409444593)--(5.304074679375265,0.8867657406276426)--(5.228833469397423,0.8543803858449063)--(5.154201474284849,0.8187480987858757)--(5.080291388658231,0.7798758785249891)--(5.007215966259028,0.7377744123133211)--(4.935087901636658,0.6924580831212156)--(4.8640197114945805,0.6439449734156475)--(4.794123615814696,0.5922568651599956)--(4.725511418879817,0.5374192360276844)--(4.658294390314279,0.4794612518249427)--(4.592583146262918,0.41841575512172113)--(4.528487530828694,0.3543192500936243)--(4.466116497889135,0.2872118835815003)--(4.405577993411586,0.21713742237914313)--(4.346978838386987,0.14414322676336178)--(4.290424612501343,0.06828022028443304)--(4.236019538663634,-0.010397144161248928)--(4.183866368508116,-0.09183092195079112)--(4.134066268988286,-0.17595971801737553)--(4.086718710178719,-0.2627187317628561)--(4.041921354400151,-0.35203980556364733)--(3.999769946781858,-0.4438514768296642)--(3.9603582073742345,-0.5380790335723598)--(3.9237777249230215,-0.6346445734344237)--(3.8901178524153184,-0.7334670661300633)--(3.874410431075394,-0.783698508657428)--(3.8594656045055804,-0.8344624192415226)--(3.845293867670346,-0.8857478192080364)--(3.8319055569285347,-0.9375435473137967)--(3.8193108470060984,-0.9898382620819577)--(3.8075197480037692,-1.042620444186364)--(3.7965421024407617,-1.0958783988843006)--(3.786387582334997,-1.1496002584973328)--(3.777065686320849,-1.2037739849394553)--(3.768585736804999,-1.258387372292142)--(3.760956877161276,-1.3134280494255997)--(3.7541880689650657,-1.3688834826657588)--(3.7482880892683106,-1.4247409785061471)--(3.7432655279153932,-1.480987686364395)--(3.7391287849011388,-1.5376106013822852)--(3.735886067771019,-1.5945965672692508)--(3.733545389064971,-1.6519322791880227)--(3.732114563804804,-1.709604286682412)--(3.7316012070264213,-1.767598996646019)--(3.7320127313571203,-1.825902676331583)--(3.7333563446389872,-1.884501456399909)--(3.7356390475986863,-1.9433813340079813)--(3.7817729391770887,-2.0169625784216554)--(3.8406614889536357,-2.011884343848216)--(3.8991536309809525,-2.0059079212844435)--(3.9572363309402707,-1.9990420087628293)--(4.014896712864063,-1.9912954933108074)--(4.072122061911019,-1.9826774482532565)--(4.128899827096567,-1.9731971304735236)--(4.185217623978182,-1.9628639776339127)--(4.2410632372949255,-1.9516876053562344)--(4.296424623560574,-1.9396778043632736)--(4.351289913609769,-1.926844537581855)--(4.40564741509662,-1.913197937208281)--(4.459485614945187,-1.8987483017369464)--(4.512793181751267,-1.8835060929528697)--(4.565558968135011,-1.8674819328889105)--(4.617772013043776,-1.8506866007485507)--(4.66942154400475,-1.8331310297949206)--(4.7204969793267955,-1.8148263042070127)--(4.770987930251089,-1.7957836559037932)--(4.870175801073993,-1.755530238254017)--(4.96690598349996,-1.7124634643729049)--(5.061102520338164,-1.6666781772839392)--(5.152692729714776,-1.6182712687308367)--(5.241607261134152,-1.567341570728622)--(5.327780148019183,-1.5139897455534361)--(5.411148856686603,-1.458318174284143)--(5.491654331716694,-1.4004308440101652)--(5.569241037680472,-1.3404332338210294)--(5.643856997191119,-1.2784321996941987)--(5.715453825250149,-1.21453585839865)--(5.783986759862463,-1.1488534705325133)--(5.849414688898338,-1.0814953228136701)--(5.911700173184018,-1.01257260974289)--(5.970809465806485,-0.9421973147594456)--(6.026712527621715,-0.8704820910094742)--(6.079383038959575,-0.7975401418476298)--(6.128798407522286,-0.7234851011925337)--(6.1749397724772415,-0.6484309138566487)--(6.217792004748711,-0.5724917159708548)--(6.257343703516804,-0.4957817156239312)--(6.29358718893584,-0.41841507383657733)--(6.326518491088016,-0.3405057859892265)--(6.356137335192053,-0.26216756382215917)--(6.382447123090203,-0.18351371812575248)--(6.405454911040664,-0.1046570422378223)--(6.425171383846217,-0.025709696463980317)--(6.441610825353404,0.05321690646413829)--(6.45479108536028,0.1320122147790795)--(6.464733542974214,0.21056664980396)--(6.471463066464841,0.28877171670411605)--(6.475007969660631,0.366520113754667)--(6.475399964940974,0.44370584001635704)--(6.472674112879078,0.5202243013137076)--(6.46686876859422,0.5959724144114407)--(6.45802552487513,0.6708487092870767)--(6.446189152139483,0.7447534293997062)--(6.43140753529755,0.8175886298570284)--(6.4137316075910915,0.8892582733851142)--(6.393215281481533,0.9596683240076236)--(6.369915376664348,1.028726838343676)--(6.343891545289346,1.0963440544361516)--(6.315206194469325,1.1624324780247315)--(6.283924406162099,1.2269069661808207)--(6.250113854513555,1.2896848082241383)--(6.213844720751744,1.3506858038437304)--(6.1751896057244515,1.4098323383490716)--(6.134223440174887,1.4670494549799202)--(6.091023392852363,1.5222649242066486)--(6.045668776556834,1.5754093099560182)--(5.998240952218204,1.6264160327004318)--(5.948823231113102,1.6752214293520855)--(5.897500775323634,1.7217648099067209)--(5.84436049654423,1.7659885107850446)--(5.789490953344301,1.8078379448233224)--(5.732982246995787,1.8472616478681394)--(5.6749259159760195,1.884211321933829)--(5.615414829257601,1.9186418748845964)--(5.554543078497945,1.9505114566070063)--(5.492405869242279,1.979781491642084)--(5.429099411254618,2.006416708249943)--(5.364720808092082,2.0303851638835315)--(5.2993679460385,2.051658267051775)--(5.233139382513753,2.070210795556103)--(5.166134234075729,2.0860209110881094)--(5.098452064132063,2.0990701701797354)--(5.0301927704789,2.109343531501242)--(4.961456472784042,2.1168293595058554)--(4.892343400131779,2.1215194244237745)--(4.822953778746377,2.1234088986119635)--(4.753387720011027,2.1224963492698428)--(4.683745108898547,2.1187837275347285)--(4.614125492929577,2.1122763539745906)--(4.5446279717733296,2.10298290049932)--(4.475351087605282,2.090915368715359)--(4.406392716335074,2.0760890647522405)--(4.337849959817122,2.0585225705930683)--(4.269819039155097,2.0382377119446)--(4.2023951892103675,2.0152595226860868)--(4.1356725544229915,1.9896162059395197)--(4.069744086052536,1.961339091807299)--(4.0047014409442525,1.9304625918268503)--(3.9406348819246984,1.89702415019487)--(3.8776331799288593,1.861064191817328)--(3.815783517959146,1.8226260672444372)--(3.7551713969745366,1.7817559945530228)--(3.6958805438061364,1.7385029982417912)--(3.637992821193168,1.692918845208002)--(3.5815881400311973,1.6450579778770307)--(3.5267443739220026,1.5949774445591358)--(3.473537276112087,1.5427368271105628)--(3.422040398904174,1.4883981659788486)--(3.372325015623585,1.4320258827147827)--(3.324460045218516,1.3736867000360564)--(3.2785119795705544,1.3134495595300808)--(3.2345448135888564,1.2513855370858298)--(3.192619978158516,1.1875677561468216)--(3.152796276010604,1.1220712988795545)--(3.115129820578321,1.0549731153537794)--(3.0796739779005318,0.9863519308329873)--(3.046479311630807,0.9162881512753641)--(3.0155935312067754,0.8448637671472466)--(2.9870614432313367,0.7721622556527938)--(2.9609249061138847,0.6982684814851486)--(2.937222788016291,0.6232685962058302)--(2.915990928144988,0.5472499363604465)--(2.897262101426889,0.4703009204400513)--(2.8810659866035255,0.39251094479861454)--(2.867429137773995,0.313970278638062)--(2.8563749594139387,0.23476995817327012)--(2.8479236848940026,0.1550016800901659)--(2.84209235851762,0.07475769441076185)--(2.83889482109435,-0.005869303120494607)--(2.838341699061271,-0.08678627901423397)--(2.8404403971612093,-0.1678999702624202)--(2.845195094683023,-0.24911699269799303)--(2.852606745265287,-0.33034394937248246)--(2.862673080261134,-0.4114875388362289)--(2.8753886156582973,-0.4924546632059379)--(2.8907446625446607,-0.5731525359046548)--(2.908729341106011,-0.6534887889595333)--(2.92932759813894,-0.7333715797433715)--(2.9525212280582744,-0.8127096970464502)--(2.9782888973747674,-0.8914126663659339)--(3.006606172615117,-0.9693908543010348)--(3.037445551652917,-1.0465555719429918)--(3.0707764984155395,-1.1228191771500586)--(3.1065654809284435,-1.198095175598918)--(3.144776012654988,-1.272298320505147)--(3.1853686970863646,-1.345344710906856)--(3.228301275532933,-1.4171518884071133)--(3.273528678064902,-1.4876389322723633)--(3.321003077547001,-1.5567265527858622)--(3.370673946708675,-1.6243371827568658)--(3.4224881181880713,-1.6903950670883643)--(3.4763898474850774,-1.7548263503081132)--(3.532320878755609,-1.8175591619698683)--(3.5902205133764484,-1.8785236998339527)--(3.6500256812069916,-1.9376523107386412)--(3.7116710144714986,-1.9948795690761667)--(3.775088924182728,-2.0501423527897904)--(3.840209679025163,-2.103379916810797)--(3.906961486613503,-2.154533963857111)--(3.9752705770396304,-2.203548712517821)--(4.045061288618811,-2.2503709625508614)--(4.1162561557437085,-2.2949501573239077)--(4.188775998752504,-2.3372384433315023)--(4.262540015715336,-2.3771907267246117)--(4.3374658760412705,-2.414764726791693)--(4.41346981580614,-2.4499210263337146)--(4.490466734699709,-2.4826231188787085)--(4.568370294489033,-2.5128374526847153)--(4.647093018893145,-2.5405334714833425)--(4.726546394762882,-2.565683651919534)--(4.806640974458132,-2.5882635376465752)--(4.887286479313617,-2.608251770038825)--(4.968391904083121,-2.6256301154881836)--(5.049865622251042,-2.6403834892538685)--(5.131615492099235,-2.652499975838608)--(5.213548963416232,-2.661970845867995)--(5.2955731847353205,-2.668790569453413)--(5.377595110987289,-2.6729568260224825)--(5.459521611453228,-2.6744705106047943)--(5.541259577902418,-2.673335736564246)--(5.622716032800073,-2.669559834773075)--(5.703798237469634,-2.663153349226357)--(5.7844138000942795,-2.654130029099403)--(5.864470783442447,-2.642506817254245)--(5.943877812202401,-2.628303835205039)--(6.022544179811227,-2.6115443645559555)--(6.100379954664131,-2.5922548249287236)--(6.177296085590451,-2.570464748400741)--(6.253204506483588,-2.5462067504781927)--(6.328018239972782,-2.5195164976323614)--(6.401651500025676,-2.490432671430731)--(6.474019793371595,-2.458996929298212)--(6.5450400196366925,-2.4252538619472173)--(6.614630570083332,-2.389250947518787)--(6.682711424847496,-2.3510385024805487)--(6.749204248569482,-2.310669629330468)--(6.814032484314764,-2.268200161158872)--(6.877121445683596,-2.2236886031244434)--(6.938398407009734,-2.177196070903121)--(6.997792691550595,-2.128786226172008)--(7.055235757573147,-2.0785252091935535)--(7.11066128224197,-2.026481568568283)--(7.1640052432181225,-1.9727261882273293)--(7.21520599787973,-1.9173322117389469)--(7.2642043600776605,-1.8603749640060485)--(7.31094367434207,-1.80193187043449)--(7.355369887458228,-1.7420823736546087)--(7.397431617332653,-1.6809078478810122)--(7.4370802190733345,-1.6184915109982243)--(7.474269848210662,-1.5549183344621311)--(7.508957520988518,-1.4902749511095918)--(7.54110317165801,-1.4246495609707153)--(7.570669706709337,-1.3581318351805618)--(7.5976230559803755,-1.2908128180889764)--(7.621932220583759,-1.2227848276692956)--(7.643569317597443,-1.1541413543284293)--(7.662509621467036,-1.0849769582226687)--(7.678731602071531,-1.0153871651850954)--(7.692216959407448,-0.9454683613720967)--(7.702950654849841,-0.8753176867378674)--(7.710920938952139,-0.8050329274470911)--(7.716119375750251,-0.7347124073372292)--(7.718540863540035,-0.6644548785428993)--(7.718183652100688,-0.5943594113958361)--(7.715049356340395,-0.5245252837147606)--(7.70914296634409,-0.4550518696002611)--(7.700472853806974,-0.3860385278503894)--(7.6890507748410455,-0.31758449011322704)--(7.674891869145676,-0.24978874889302194)--(7.658014655536929,-0.182749945526834)--(7.638441023834116,-0.11656625824875011)--(7.616196223105752,-0.0513352904587574)--(7.591308846280891,0.012846040686644855)--(7.563810811135435,0.07588161524531412)--(7.533737337666901,0.13767622090523002)--(7.501126921874691,0.19813566272911132)--(7.466021305966696,0.2571668721123279)--(7.428465445016741,0.31467801483921676)--(7.388507470101018,0.37057859812373284)--(7.346198647945297,0.42477957652124854)--(7.301593337118333,0.47719345659930035)--(7.2057258562395825,0.576318326578249)--(7.145670669463989,0.6305820984210833)--(7.082824779499289,0.681924453783592)--(7.017299996009972,0.7302208882615004)--(6.949213262109829,0.775350986483673)--(6.878686505069395,0.8171986242525913)--(6.80584647928422,0.8556521651896496)--(6.730824601707877,0.8906046515942045)--(6.653756779964498,0.9219539892328772)--(6.574783233366126,0.9496031257836874)--(6.494048307070418,0.9734602226679547)--(6.411700279624169,0.993438820011705)--(6.3278911641477285,1.009457994487441)--(6.24277650342457,1.0214425097966837)--(6.156515159169266,1.0293229595634736)--(6.069269095755586,1.0330359024192304)--(5.981203158694583,1.032523989069822)--(5.892484848160368,1.0277360811464995)--(5.80328408786853,1.0186273616533879)--(5.713772989619189,1.00515943683559)--(5.691367083097633,1.0011074497453225)--(5.685764594958424,1.000051514851744)--(5.6855895118414,1.0000182399576059)--(5.6855019701664835,1.0000015962158717)--(5.685496498809231,1.0000005558426774)--(5.6854937631304905,1.000000035649933)--(5.685493592150569,1.0000000031377505)^^(3.666532459319288,1.7158227254556468), linewidth(2.)); /* dots and labels */ dot((6.38,1.),dotstyle); dot((9.02,4.02),dotstyle); dot((9.074301470817678,-1.9716560339900866),dotstyle); dot((3.74,-2.02),dotstyle); dot((14.408602941635356,-1.9233120679801736),dotstyle); dot((9.924343193909214,-0.8781989574561639),dotstyle); dot((4.367476888693955,2.066465238469869),linewidth(4.pt) + dotstyle); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy]
20.07.2018 17:05
Let $N$ be the midpoint of $BT$. Now since $M$ is the midpoint of $BC$, we hace $MN||CT$ so $\angle CTM = \angle TMN$. Also $\angle TNX = 90 = \angle XMT$, hence $\omega_{TNMX}$ exists. So coupled with this, we get $\angle CTM = \angle TMN = \angle TXN$ (call this $\spadesuit$) Now, $\angle BTM $ $$= \angle BTX - \angle XTM = \angle BTX + \angle TXM - 90 = \angle TXM + (\angle BTX - 90)$$$$= \angle TXM - \angle TXN = \angle NXM = \angle NXB + \angle BXM = \angle TXN + \angle BXM \overset{\spadesuit}{=} \angle CTM + \angle BAM$$, hence $\angle BTM - \angle CTM = \angle BAM$, independent of $X$, as desired.
26.12.2018 22:03
Let $N$ be not the midpoint of $BT$.
05.05.2019 18:04
delegat wrote: Denote by $ M$ midpoint of side $ BC$ in an isosceles triangle $ \triangle ABC$ with $ AC = AB$. Take a point $ X$ on a smaller arc $ \overarc{MA}$ of circumcircle of triangle $ \triangle ABM$. Denote by $ T$ point inside of angle $ BMA$ such that $ \angle TMX = 90$ and $ TX = BX$. Prove that $ \angle MTB - \angle CTM$ does not depend on choice of $ X$. Author: Farzan Barekat, Canada Let $N$ be the midpoint of $AB.$ Define $\omega,\Omega$ to be the circles $(AMB), \mathcal{C}(X,XB).$ Let $Y$ be the antipode of $X$ in $\omega.$ Clearly $T \in \overline{MY}, T \in \Omega$ by the conditions. Also, $\measuredangle XBY=\pi/2$ implies that $YB$ is tangent to $\Omega.$ Claim: $\measuredangle YBT=\measuredangle CTM.$ Proof: Let $L$ be the reflection of $T$ over $M.$ Then $TBLC$ is a parallelogram. Further, since $TM=ML$ and $\measuredangle XMT=\pi/2,$ hence $TX=XL.$ So, $L \in \Omega.$ Since $YB$ is tangent to this circle, hence $\measuredangle YBT=\measuredangle BLT=\measuredangle CTL.$ $\square$ Thus we have $$\measuredangle MTB-\measuredangle CTM=\measuredangle MTB-\measuredangle YBT=\measuredangle TYB=\measuredangle MAB$$which is independent of the position of $X.$ $\blacksquare$ [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(13cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -1086.5975564873966, xmax = 1190.1243804115663, ymin = -879.117740078539, ymax = 608.3405920287947; /* image dimensions */ draw(arc((-586.1713229414271,-304.6162131768956),108.41533032852203,92.83654263451801,108.26645574818497)--(-586.1713229414271,-304.6162131768956)--cycle, linewidth(0.2) + red); draw(arc((-603.0349055618302,35.73566225078713),108.41533032852203,-35.66215225285588,-20.232239139188955)--(-603.0349055618302,35.73566225078713)--cycle, linewidth(0.2) + red); /* draw figures */ draw(circle((-353.0915854617429,10.809060298607557), 392.19799485807476), linewidth(0.4)); draw((-586.1713229414271,-304.6162131768956)--(-120.01184798205874,326.2343337741107), linewidth(0.4)); draw((-120.01184798205874,326.2343337741107)--(337.5007033357593,-310.9150475089905), linewidth(0.2)); draw((337.5007033357593,-310.9150475089905)--(-586.1713229414271,-304.6162131768956), linewidth(0.4)); draw((-120.01184798205874,326.2343337741107)--(-124.3353098028339,-307.76563034294304), linewidth(0.4)); draw((-728.1424189633996,125.50927590610821)--(21.959248039913632,-103.89115530889305), linewidth(0.2)); draw((-586.1713229414271,-304.6162131768956)--(-728.1424189633996,125.50927590610821), linewidth(0.4)); draw((-728.1424189633996,125.50927590610821)--(-124.3353098028339,-307.76563034294304), linewidth(0.4)); draw(circle((21.959248039913632,-103.89115530889305), 640.4009214688908), linewidth(0.2) + linetype("2 2")); draw((-603.0349055618302,35.73566225078713)--(354.3642859561624,-651.2669229366732), linewidth(0.4)); draw((337.5007033357593,-310.9150475089905)--(354.3642859561624,-651.2669229366732), linewidth(0.4)); draw((-603.0349055618302,35.73566225078713)--(337.5007033357593,-310.9150475089905), linewidth(0.4)); draw((-586.1713229414271,-304.6162131768956)--(354.3642859561624,-651.2669229366732), linewidth(0.4)); draw((-603.0349055618302,35.73566225078713)--(-586.1713229414271,-304.6162131768956), linewidth(0.4)); draw((-124.3353098028339,-307.76563034294304)--(337.5007033357593,-310.9150475089905), linewidth(0.2)); draw((-603.0349055618302,35.73566225078713)--(-728.1424189633996,125.50927590610821), linewidth(0.2)); /* dots and labels */ dot((-353.0915854617429,10.809060298607557),dotstyle); label("$N$", (-377.5612961388625,42.4125677139054), NE * labelscalefactor); dot((-120.01184798205874,326.2343337741107),dotstyle); label("$A$", (-110.85958353069825,348.1437992403399), NE * labelscalefactor); dot((-120.0118479820587,326.2343337741107),linewidth(4pt) + dotstyle); dot((-586.1713229414271,-304.6162131768956),linewidth(4pt) + dotstyle); label("$B$", (-622.5799426813222,-360.89246110819965), NE * labelscalefactor); dot((-124.3353098028339,-307.76563034294304),dotstyle); label("$M$", (-141.2158760226844,-365.2290743213406), NE * labelscalefactor); dot((337.5007033357593,-310.9150475089905),linewidth(4pt) + dotstyle); label("$C$", (346.6531104556648,-293.6749563045155), NE * labelscalefactor); dot((21.959248039913632,-103.89115530889305),dotstyle); label("$X$", (56.1000251752257,-98.52736171317432), NE * labelscalefactor); dot((21.95924803991367,-103.89115530889306),linewidth(4pt) + dotstyle); dot((-728.1424189633996,125.50927590610821),linewidth(4pt) + dotstyle); label("$Y$", (-783.0346315675349,129.14483197672368), NE * labelscalefactor); dot((-603.0349055618302,35.73566225078713),linewidth(4pt) + dotstyle); label("$T$", (-652.9362351733084,12.056275221919), NE * labelscalefactor); dot((354.3642859561624,-651.2669229366732),linewidth(4pt) + dotstyle); label("$L$", (368.33617652136917,-696.9799851266205), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy]
25.10.2019 22:48
28.12.2019 10:25
The structure of the most un-elegant solution in this topic. I will compute these step by step: 1) Let $a,b,c$ be the side lengths of $\Delta ABC$.We can compute $AM$ by Pythagoras. 2) Let $AX=x$, We can compute $BX$ by Pythagoras. 3) We can find $MX$ by Ptolemy over $ABMX$. 4)We can compute $MT$ by Pythagoras over $\Delta MTX$($TX=BX$ will be useful here.) 5) Note that $\angle XMA =\angle TMB$. The side lengths of $\Delta MXA$ is known, hence both the angles is known. 6) By cosine rule we can find BT and TC and hence $\angle BTM \& \angle CTM$. 7) If we subtract these angles, we will get a relation in which there is not $x$ ! That means it is independent of $X$. I know it is near impossible to do but It is the first thing that came to my mind (Geo is a lie without bash)
08.01.2020 07:00
[asy][asy] size(9cm); defaultpen(fontsize(10pt)); defaultpen(linewidth(0.4)); pair A = dir(55), B = dir(235), M = dir(305), C = 2M-B, X = dir(355), D = dir(175), T = intersectionpoint(D--M,arc(X,abs(B-X),90,225)), E = 2M-T; dot("$A$", A, dir(55)); dot("$B$", B, dir(235)); dot("$M$", M, dir(270)); dot("$C$", C, dir(20)); dot("$X$", X, dir(5)); dot("$D$", D, dir(175)); dot("$T$", T, dir(210)); dot("$E$", E, dir(280)); draw(A--B--C--A--M--X^^unitcircle, purple); draw(T--X^^E--X^^B--X, blue); draw(T--B--E--C--T, orange); draw(X--A--D--2B-D^^D--E, heavygreen); draw(arc(circumcenter(T,B,E),abs(circumcenter(T,B,E)-T),165,315), magenta); [/asy][/asy] Let $\overline{MT}$ meet $(ABM)$ again at $D$, and $E$ be the reflection of $T$ over $M$. Claim: $X$ is the circumcenter of $(TBE)$. Proof. Note that $\triangle XMT \cong \triangle XME$ by SAS, so $TX = EX$. Also we are given that $TX = BX$ so we are done. $\square$ In addition, $\angle DBX = \angle DMX = 90^\circ$, so $\overline{DB}$ is tangent to $(TBE)$. It follows that \begin{align*}\angle MTB - \angle CTM &= \angle MTB - \angle BEM = \angle MTB - \angle DBT \\ &= \angle MDB = \angle BAM,\end{align*}which does not depend on $X$ as desired. $\blacksquare$
11.04.2020 17:50
Solution from Twitch Solves ISL: Construct parallelogram $CTBS$ whose diagonals meet at $M$. Also, let $N$ be the midpoint of $\overline{BT}$. [asy][asy] pair A = dir(180); pair B = dir(0); pair M = dir(35); pair C = 2*M-B; pair X = dir(100); filldraw(A--B--C--cycle, invisible, red); draw(A--M, red); filldraw(unitcircle, invisible, blue); pair Y = -X; draw(CP(X, B), mediumgreen); pair T = IP(M--Y, CP(X, B)); pair S = 2*M-T; draw(S--T, mediumgreen); draw(B--X--M, mediumgreen); pair N = midpoint(B--T); draw(B--T, deepgreen); draw(T--X--S, mediumgreen); draw(X--N, deepgreen); filldraw(circumcircle(X, M, T), invisible, dotted+deepgreen); dot("$A$", A, dir(A)); dot("$B$", B, dir(B)); dot("$M$", M, dir(M)); dot("$C$", C, dir(C)); dot("$X$", X, dir(X)); dot("$T$", T, dir(T)); dot("$S$", S, dir(S)); dot("$N$", N, dir(N)); /* TSQ Source: A = dir 180 B = dir 0 M = dir 35 C = 2*M-B X = dir 100 A--B--C--cycle 0.1 lightred / red A--M red unitcircle 0.1 cyan / blue Y := -X CP X B mediumgreen T = IP M--Y CP X B S = 2*M-T S--T mediumgreen B--X--M mediumgreen N = midpoint B--T B--T deepgreen T--X--S mediumgreen X--N deepgreen circumcircle X M T 0.1 yellow / dotted deepgreen */ [/asy][/asy] We first eliminate $C$ from the diagram by noting that \[ \angle CTM = \angle MSB = \angle TSB = \frac{1}{2} \angle TXB = \angle NXB. \]Also, noting that $XMTN$ are cyclic (as $\angle XMT = \angle XNT = 90^{\circ}$), we have \[ \angle MTB = \angle MTN = \angle NXM. \]Thus $\angle MTB - \angle CTM = \angle NXM - \angle NXB = \angle MXB$ which is fixed.
06.07.2020 01:38
Let $N$ be the midpoint of $BT$. Observe that since $\angle XMT = \angle XNT = 90$, the quadrilateral $XMNT$ is cyclic. Furthermore, $NM \parallel CT$. On the one hand, note that $$\angle MTB = \angle MTN = MXN.$$ On the other hand, note that $$\angle CTM = \angle NMT = \angle NXT = \angle NXB.$$Now, note that $$\angle MTB - \angle CTM = \angle MXN - \angle NXB = \angle BXM = \angle BAM$$which does not depend on $X$, as desired.
21.07.2020 22:28
[asy][asy] unitsize(3cm); pair A, B, C, M, T, T1, X; A = dir(90); B = dir(210); C = dir(330); M = (B + C) / 2; X = rotate(20, (A + B) / 2) * M; T = IP(CP(X, B), Line(M, rotate(90, M) * X, 10), 0); T1 = 2 * M - T; draw(A--B--C--A^^unitcircle, heavyred); draw(circumcircle(A, B, M), heavygreen); draw(CP(X, T), blue); draw(X--T^^X--B^^X--M^^X--T1^^T--T1, orange); dot("$A$", A, N); dot("$B$", B, SW); dot("$C$", C, SE); dot("$M$", M, S); dot("$X$", X, E); dot("$T$", T, NW); dot("$T'$", T1, SE); [/asy][/asy] Let $T'$ be the reflection of $T$ over $M$. Note that $TBT'C$ is a parallelogram. Additionally, as $\angle TMX = 90^\circ$, $\triangle XTT'$ is isosceles, so we have $XT = XB = XT'$. Hence, $X$ is the circumcenter of $\triangle BTT'$. Now, \begin{align*} \angle BTM - \angle CTM &= \angle BTT' - \angle CTT' \\ &= \angle BTT' - \angle BT'T \\ &= \frac{1}{2}(\angle BXT' - \angle BXT) \\ &= \frac{1}{2}((\angle BXM + \angle MXT) - (\angle MXT - \angle BXM)) \\ &= \frac{1}{2}(2\angle BXM) \\ &= \angle BAM, \end{align*}which is fixed, as desired. $\Box$
24.10.2020 14:28
AMN300 wrote: We do not use complex numbers
yes I think the locus of T is a circle passing through $A,M$ and midpoint of $AB$ When I started working on this problem, I misread it as $TB=TX$. If we characterize $T$ as such, can we find any interesting properties of this new configuration? All my progress so far for this configuration is rather trivial.
02.11.2020 21:03
Dunno if this has been posted before. Complex bash with $a=-1, b=1$ so that $|m|=|x|=1$ and $c=2m-1$. Since the foot from $T$ to $\overline{MX}$ is $M$, $$m=\frac{1}{2}(t+m+x-mx\overline{t}) \implies \overline{t}=\frac{t-m+x}{mx}.$$Since $\overline{TX}=\overline{BX}$ we should have $\frac{t-x}{b-x}$ on the unit circle, and upon substituting our expression for $\overline{t}$ $$\frac{t-x}{b-x}=\frac{\frac{1}{b}-\frac{1}{x}}{\overline{t}-\frac{1}{x}} \implies t^2-2mt+x^2m+m-x^2.$$Let $r$ be the unwanted root. By Vieta's, it follows that the argument of $\angle{MTB}-\angle{CTM}$ is (for $k \in \mathbb{R}$) $$\frac{\frac{m-t}{1-t}}{\frac{2m-1-t}{m-t}}=k_1 \cdot \frac{\frac{r-t}{1-t}}{\frac{r-1}{r-t}}=k_1 \cdot \frac{(r-t)^2}{-(rt-r-t+1)} = k_1 \cdot \frac{4m^2-4m-4x^2m+4x^2}{-(x^2m-x^2-m+1)} = k_2 \cdot \frac{m-x^2}{1-x^2}$$or $\frac{m-x^2}{1-x^2}$. Since $x^2 \in (ABM)$, this is equivalent to $\angle{MXB}=\angle{MAB}$ which does not depend on $X$, done.
04.03.2021 07:04
Construct $N$ the midpoint of $TB$. Since $\overline{MN} \parallel \overline{TC}$, we can calculate \begin{align*} \angle MTB - \angle MTC = \angle MTN - \angle TMN = \angle MXN - \angle NXB = \angle MXB = \angle MAB, \end{align*}which is constant done yay kill me now misread this problem for a good 50 minutes
10.09.2021 21:00
Solved with MrOreoJuice and Fakesolver19. [asy][asy] //meh asy, as always... size(210); pair A=(0,6.5),B=(-3,0),C=(3,0),M=(0,0),T=(-3.246,3.0711); pair X=(1.828,1.9321), TT=(3.246,-3.0711); draw(A--B--C--cycle, orange); draw(circumcircle(A,B,M), orange); draw(T--B--TT--C--cycle, magenta); draw(X--T, red); draw(X--B, red); draw(X--TT, red); draw(X--M, orange); draw(circumcircle(B,T,TT), red); draw(T--TT, magenta); dot("$A$",A,N); dot("$B$",B,W); dot("$C$",C,E); dot("$M$",M,S); dot("$T'$",TT,S); dot("$X$",X,NE); dot("$T$",T,NW); [/asy][/asy] Let $T'$ be the reflection of $T$ over $M$. Note that $TBT'C$ is a parallelogram and $X$ is circumcenter of $(TBT')$. \begin{align*} \angle MTB - \angle CTM &= \angle T'TB - \angle TT'B \\ &= \dfrac{\angle T'XB - \angle TXB}{2} \\ &= \dfrac{\angle TXT' - 2\angle TXB}{2} \\ &= \dfrac{2\angle TXM - 2\angle TXB}{2}\\ &= \dfrac{2\angle BXM}{2}\\ &= \angle BAM \end{align*}which does not depend on $X$ as desired. $\blacksquare$
23.11.2021 13:16
Let $N$ be the midpoint of $BT$. We have that $\angle XMT=\angle XNT=90$ so $XMNT$ is cyclic. Also $CT\parallel MN$ thus $\angle CTM=\angle TMN$. In turn $\angle TMN=\angle TXN=\angle BXN$. Also $\angle MTB=\angle MXN$, so we can get that $$\angle MTB-\angle CTM= \angle MXN-\angle BXN = \angle MXB=\angle MAB$$which doesn't depend on $X$.
29.12.2021 13:02
Denote by $N$ midpoint of $BT.$ Clearly $CT\parallel MN, XN\perp BT,$ hence $$\angle BTM-\angle CTM=\angle NTM-\angle NMT=\angle NXM-\angle NXT=\angle BXM=\angle BAM.$$
14.01.2022 18:47
Let $N$ be midpoint of $TB$. $BXT$ is isosceles so $\angle XNT = 90 = XMT$ so $XMNT$ is cyclic. $\angle MTB - \angle MTC = \angle MXE - \angle EXT = \angle MXE - \angle BXE = \angle MXB = \angle MAB$ and $\angle MAB$ is fixed and independent from $X$. we're Done.
13.02.2022 20:29
Let $N$ be the midpoint of $\overline{BT}$ and note $MNTX$ is cyclic and $\overline{MN}\parallel\overline{CT}.$ Hence, $\angle BTM=\angle BXM$ and $$\angle MTC=\angle NMB=\angle TXN=\angle NXB$$so $$\angle MTB-\angle CTM=\angle BXM=\tfrac{1}{2}\angle A.$$$\square$
21.02.2022 18:35
All angles are in degrees. Let $MT$ intersect the circle again at $U$. Note that $\angle XBU = \angle XMU = 90$, thus $AXBU$ is a rectangle. Since $\angle XBM + \angle TMB = \angle XBM + \angle UMB = \angle XBM + \angle ABX = \angle MBA$, we have $$\angle MTB = 180 - \angle TBX - \angle XBM - \angle TMB = 180 - \angle MBA - \angle TBX.$$ Let $N$ be the midpoint of $BT$. Notice that $\angle XMT = \angle XNT = 90$, so $XMNT$ is cyclic. Since $MN\parallel CT$, we have $$\angle MTC = \angle TMN = \angle TXN = 90 - \angle XBT.$$This implies that $\angle BTM - \angle MTC = 90 - \angle MBA$, a constant value.
Attachments:

15.06.2022 03:36
Let $N$ denote the midpoint of $BT.$ Then, $\angle TNX=\angle TMX=90^\circ$ so $TNMX$ is cyclic. Then, $\angle MTB-\angle CTM=\angle NTM-\angle TMN$ because $NM || TC.$ Now, $\angle NTM-\angle TMN=\angle NXM-\angle TXN=\angle BXM=\angle BAM$ which is fixed so we're done.
30.07.2022 12:28
Let $T_1$ be the reflection of $T$ in $M$, ray $MT$ meet $(ABM)$ again at $Y$, and the circle centered at $X$ with radius $XB = XT$ meet $(ABM)$ again at $Q$. Because $XM \perp TT_1$, we know $XT = XT_1$, so $BTQT_1$ is cyclic. Now, observe $$\angle YBX = \angle YMX = \angle TMX = 90^{\circ}$$which implies $YB$ is tangent to $(BTQT_1)$. Similarly, we deduce that $YQ$ is tangent to $(BTQT_1)$, so $\overline{TT_1Y}$ is the $T$-Symmedian of $BQT$. Now, since $M$ is the midpoint of $TT_1$, we know it's the $T$-Dumpty point of $BQT$, yielding $MBT \overset{+}{\sim} MTQ$. Thus, because $BTCT_1$ is clearly a parallelogram, $$\angle MTB - \angle CTM = \angle MQT - \angle BT_1T$$$$= \angle MQT - \angle BQT = \angle MQB = \angle MAB$$which finishes. $\blacksquare$ Config Stuff: Let ray $XT$ meet $(ABM)$ again at $P$. The Incenter-Excenter Lemma implies $T$ is the incenter of $BPQ$. Moreover, since $\angle XMT = 90^{\circ}$, we know the $P$-Mixtilinear Incircle of $BPQ$ touches $(BPQ)$ at $M$. In fact, $MBT \overset{+}{\sim} MTQ$ is actually a well-known mixtilinear lemma.
05.10.2022 22:44
Let $D$ be the midpoint of $BT$. So $TDMX$ is cyclic and $MD\parallel CT$. So the desired angle quantity is $\angle BAM$ which is fixed.
03.02.2023 02:30
Let $E = \overline{TM} \cap (X)$. Notice that $\angle MTB - \angle CTM = \angle MTB - \angle BET = \frac 12(\widehat{BE} - \widehat{TB})$ because $TCEB$ is a parallelogram. However, setting $D = \overline{XM} \cap (X)$ as the arc midpoint of $\widehat{TE}$, we have $$\frac 12(\widehat{BE} - \widehat{TB})= \widehat{BD} = \angle BXM = \angle BAM$$is fixed regardless of $X$, as needed.
20.07.2023 10:49
time to go through my writeup list Let $N$ be the midpoint of $BT$, with $XMNT$ cyclic (since $\angle TNX=\angle TMX=90^\circ$) and $MN \parallel TC$ (since $MN$ is the $B$-midsegment in $\triangle BTC$). Now we angle chase: \[\angle MTC=\angle NMT=\angle TXN=\angle NXB\]and $\angle BTM=\angle NXM$, so we are done since $\angle BTM - \angle MTC = \angle BXM = 90 - \angle ACM$. $\square$
04.08.2023 05:22
Quote: When I started working on this problem, I misread it as $TB=TX$. If we characterize $T$ as such, can we find any interesting properties of this new configuration? All my progress so far for this configuration is rather trivial. LOL i made the exact same mistake on ggb, even though i READ TX=BX I didn't construct it properly and constructed it as on the circle with radius BX but with center B, so i was like "why is this not working" My solution is the same as above, but without typos: @above I think it should be MTC=NMT=..., and it should also be BTM=NXM, hence BTM-MTC=BXM=BAM, which is independent.
25.08.2023 00:34
Let $\overline{MT}$ intersect $(ABM)$ again at $X'$ (the $X$-antipode) and the circle $\omega$ centered at $X$ passing through $B$ and $T$ at $D$. Then since $\overline{XM} \perp \overline{TD}$, $M$ is the midpoint of chord $\overline{DT}$, hence $BDCT$ is a parallelogram. On the other hand, since $\angle X'BX=90^\circ$, $\overline{X'B}$ is tangent to $\omega$, hence $\angle X'BT=\angle BDT=\angle CTM$, hence $\angle MTB-\angle CTM=\angle BX'M=\angle BAM$ which is fixed. $\blacksquare$
22.10.2023 18:03
Let $S$ be such that $SBTC$ is a parallelogram. Then \[2(\angle MTB-\angle CTM)=\angle BXS-\angle BTX=(\angle BXM+\angle MXS)-(\angle MXT-\angle BXM)=2\angle BXM=2\angle BAM\]done.
03.01.2024 14:51
Let Omega be circle with center X and radius XB. Let TM intersect Omega at Y. Let P be point on Omega(Arc TBY) such that Angle PTY=CTY After that observe TY||BP (Angle chase for this) We are done