Problem

Source: Ukraine TST 2013 p6

Tags: concurrency, concurrent, parallel, hexagon, Cyclic, perpendicular bisector, geometry



Six different points $A, B, C, D, E, F$ are marked on the plane, no four of them lie on one circle and no two segments with ends at these points lie on parallel lines. Let $P, Q,R$ be the points of intersection of the perpendicular bisectors to pairs of segments $(AD, BE)$, $(BE, CF)$ ,$(CF, DA)$ respectively, and $P', Q' ,R'$ are points the intersection of the perpendicular bisectors to the pairs of segments $(AE, BD)$, $(BF, CE)$ , $(CA, DF)$ respectively. Show that $P \ne P', Q \ne Q', R \ne R'$, and prove that the lines $PP', QQ'$ and $RR'$ intersect at one point or are parallel.