Problem

Source: Canada Repêchage 2020/5 CMOQR

Tags: Sequence, perfect cube, number theory, number theory with sequences



We define the following sequences: • Sequence $A$ has $a_n = n$. • Sequence $B$ has $b_n = a_n$ when $a_n \not\equiv 0$ (mod 3) and $b_n = 0$ otherwise. • Sequence $C$ has $c_n =\sum_{i=1}^{n} b_i$ .• Sequence $D$ has $d_n = c_n$ when $c_n \not\equiv 0$ (mod 3) and $d_n = 0$ otherwise. • Sequence $E$ has $e_n =\sum_{i=1}^{n}d_i$ Prove that the terms of sequence E are exactly the perfect cubes.