Suppose that $x,y$ are distinct positive reals, and $n>1$ is a positive integer. If \[x^n-y^n=x^{n+1}-y^{n+1},\]then show that \[1<x+y<\frac{2n}{n+1}.\]
Problem
Source: 2018 Taiwan TST Round 3
Tags: inequalities, Taiwan
02.04.2020 12:14
Ok!
02.04.2020 12:52
Funny problem We could assume $x > y$. The first part is immediate since \[ (x + y)(x^n - y^n) = (x^{n + 1} - y^{n + 1}) + xy(x^{n - 1} - y^{n - 1}) > x^{n + 1} - y^{n + 1} = x^n - y^n \]The second part is actually quite interesting. Notice that \[ (x^n - y^n)(x + y - 1) = xy(x^{n - 1} - y^{n - 1})\]Therefore, \[ x + y - 1 = \frac{xy(x^{n - 1} - y^{n - 1})}{x^n - y^n} \]By AM-GM, it is easy to deduce that $(x^n + y^n)(x-y) > \frac{2}{n+1} (x^n - y^n)$. Plugging into the identity: \begin{align*} (x - y)(x^n + y^n) + xy (x^{n - 1} - y^{n - 1}) = x^{n + 1} - y^{n + 1} &= x^n - y^n \\ xy (x^{n - 1} - y^{n - 1}) &< \frac{n - 1}{n + 1} (x^n - y^n) \\ \frac{xy(x^{n - 1} - y^{n - 1})}{x^n - y^n} &< \frac{n - 1}{n + 1} \\ x + y &< \frac{2n}{n + 1} \end{align*}which is what we wanted.