Let $n\ge 2$ be a given integer. Determine all sequences $x_1,...,x_n$ of positive rational numbers such that $x_1^{x_2}=x_2^{x_3}=...=x_{n-1}^{x_n}=x_n^{x_1}$
Problem
Source: Balkan MO Shortlist 2013 N9 BMO
Tags: number theory, rational
kaede
12.03.2020 12:51
Lemma
Let $( x,y)$ be a pair of positive rational numbers with $x >y$.
$x^{y} =y^{x}$ hold if and only if $( x,y) =\left(( 1+1/n)^{n+1} ,( 1+1/n)^{n}\right)$ for $n\in \mathbb{N}$.
proof of lemmaIt is not difficult to verify that $( x,y) =\left(( 1+1/n)^{n+1} ,( 1+1/n)^{n}\right)$ satisfies $x^{y} =y^{x}$.
Suppose that $x^{y} =y^{x}$.
Since $x/y >1$, we can take $r\in \mathbb{Q}^{+}$ such that $x/y=1+r$.
Then we have $x=y^{x/y} =y^{1+r}$, which implise $1+r=y^{r} \ \cdots ( \twonotes )$.
Let $r=m/n$ for $( m,n) \in \mathbb{N}^{2}$ with $\gcd( m,n) =1$.
Since $y^{m/n} \in \mathbb{Q}$, we can take $y=z^{n}$ for $z\in \mathbb{Q}^{+}$.
From $( 1)$ and $y=z^{n}$, we have $( m+n) /n=z^{m}$.
So we can take $( A,B) \in \mathbb{N}^{2}$ such that $m+n=A^{m}$ and $n=B^{m}$.
Thus we have $m=A^{m} -B^{m} \geq 2^{m} -1$.
So we must have $m=1$.
From $\twonotes $, we have $y=( 1+r)^{1/r} =( 1+1/n)^{n}$.
From $x/y=1+r$, we have $x=( 1+1/n)^{n+1}$.
$\blacksquare $
Let $( r_{1} ,\cdots ,r_{n}) \in \mathbb{Q}^{n}_{+}$ and $r_{n+j} =r_{j}$ for all $j\in \mathbb{N}$.
We want to solve the equation : $r_1^{r_2}=r_2^{r_3}=...=r_{n-1}^{r_n}=r_n^{r_1}$
Suppose that $r^{r_{k+1}}_{k} =r^{r_{k+2}}_{k+1}$ for each $k\in \mathbb{N}$.
WLOG, $\max\{r_{1} ,\dotsc ,r_{n}\} =r_{1}$.
If $r_{i} =1$ for some $i$, then $r_{j} =1$ for all $j$.
So we suppose, henceforth, that $r_{i} \neq 1$ for all $i$.
If $r_{i} > 1$ for some $i$, then $r_{j} >1$ for all $j$.
If $r_{i} < 1$ for some $i$, then $r_{j} < 1$ for all $j$.
We consider the following two case $( 1) ,( 2)$ :
$( 1)$ $r_{i} >1$ for all $i\in \mathbb{N}$.
Since $r^{r_{2}}_{1} =r^{r_{k+1}}_{k}$ and $r_{1} \geq r_{k}$ for all $k\in \mathbb{N}$, $\min\{r_{1} ,\cdots ,r_{n}\} =r_{2}$.
Since $r^{r_{3}}_{2} =r^{r_{k+1}}_{k}$ and $r_{k} \geq r_{2}$ for all $k\in \mathbb{N}$, $\max\{r_{1} ,\cdots ,r_{n}\} =r_{3}$.
So we must have $r_{1} =r_{3}$.
Suppose that $r_{i} =r_{i+2}$ for $i\in \mathbb{N}$.
Since $r_{i} =r_{i+2}$ and $r^{r_{i+1}}_{i} =r^{r_{i+3}}_{i+2}$, we have $r_{i+1} =r_{i+3}$.
So we must have $( r_{1} ,r_{2}) =( r_{2i-1} ,r_{2i})$ for all $i\in \mathbb{N}$.
We consider the following two sub-cases $( 1a) ,( 1b)$
$( 1a)$ $n$ is an odd integer.
Since $r_{n} =r_{1} =r_{n+1}$, we have $r_{1} =r_{i}$ for all $i\in \mathbb{N}$.
Therefore, $( r_{1} ,\dotsc ,r_{n}) =( q,\dotsc ,q)$ for some $q\in \mathbb{Q}^{n}_{+}$.
$( 1b)$ $n$ is an even integer,
If $r_{1} =r_{2}$, then $( r_{1} ,\dotsc ,r_{n}) =( q,\dotsc ,q)$ for some $q\in \mathbb{Q}^{n}_{+}$.
If $r_{1} \neq r_{2}$, by lemma, we have $\{r_{1} ,r_{2}\} =\left\{( 1+1/m)^{m+1} ,( 1+1/m)^{m}\right\}$ for $m\in \mathbb{N}$.
Therefore, $r_{2i-1} =( 1+1/m)^{m+1}$ and $r_{2i} =( 1+1/m)^{m}$
or $r_{2i} =( 1+1/m)^{m+1}$ and $r_{2i-1} =( 1+1/m)^{m}$ for all $i\in \mathbb{N}$.
$( 2)$ $r_{i} <1$ for all $i\in \mathbb{N}$.
Since $r^{r_{2}}_{1} =r^{r_{k+1}}_{k}$ and $r_{1} \geq r_{k}$ for all $k\in \mathbb{N}$, $\max\{r_{1} ,\cdots ,r_{n}\} =r_{2}$.
So we must have $r_{1} =r_{2}$.
Suppose that $r_{i} =r_{i+1}$ for $i\in \mathbb{N}$.
Since $r_{i} =r_{i+1}$ and $r^{r_{i+1}}_{i} =r^{r_{i+2}}_{i+1}$, we have $r_{i+1} =r_{i+2}$.
So we must have $r_{1} =r_{i}$ for all $i\in \mathbb{N}$.
Therefore, $( r_{1} ,\dotsc ,r_{n}) =( q,\dotsc ,q)$ for some $q\in \mathbb{Q}^{n}_{+}$.
Hence we have the following conclusion :
If $r\leq 1$ or $n$ is odd, then $( r_{1} ,\dotsc ,r_{n}) =( q,\dotsc ,q)$ for $q\in \mathbb{Q}^{n}_{+}$.
If $r >1$ and $n$ is even, then $\{r_{1} ,r_{2}\} =\left\{( 1+1/m)^{m+1} ,( 1+1/m)^{m}\right\}$ for $m\in \mathbb{N}$
and $( r_{2i-1} ,r_{2i}) =( r_{1} ,r_{2})$ for all $i\in \mathbb{N}$ otherwise $( r_{1} ,\dotsc ,r_{n}) =( q,\dotsc ,q)$ for $q\in \mathbb{Q}^{n}_{+}$.
On the other hand, we can easily verify that these n-tuples give solutions.