Let $p$ be a prime number. Determine all triples $(a,b,c)$ of positive integers such that $a + b + c < 2p\sqrt{p}$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{p}$
Problem
Source: Balkan MO Shortlist 2013 N1 BMO
Tags: number theory, prime, reciprocal sum
09.03.2020 19:59
31.10.2023 11:17
With multiplying both sides with $pabc$ we get $abc=p(ab+bc+ac)$ So $p \mid abc$ WLOG, assume $p \mid c$ With substituting $c=pz$ , ($1<z<2\sqrt{p}$) (1) we get $abz=ab+bpz+apz$ so $p \mid ab(z-1)$. By (1) $p \mid ab$. WLOG, $p \mid b$ let $b=py$ $ayz=ay+pyz+az$ $\Longrightarrow$ $p \mid a[(x-1)(y-1)-1]$ if $p \mid (x-1)(y-1)-1$ since both $x$ and $y$ can not be $2$ at the same time, $(x-1)(y-1) \geq p+1$ so, by AM-GM ineq: $2\sqrt{p}>x+y \geq 2\sqrt{(x-1)(y-1)}+2 \geq 2\sqrt{p+1} +2> 2\sqrt{p}$ contradiction. Thus, $p \mid a$ $\Longrightarrow$ $a=px$ $$xyz=xy+yz+xz$$WLOG $x \geq y \geq z$ We get $z<=3$, so $z=3$ or $z=2$ $(i)$ $z=3$ $\Longrightarrow$ $2xy=3(x+y)$ Let $d=gcd(x,y)$, $x=dk$, $y=dt$. we get ${k,t} \mid 3$ so $(x,y)=(6,2)$ or $(3,3)$ $\Longrightarrow (a,b,c)=(6p,3p,2p)$ and permutations for $p \geq 31$ ; $(a,b,c)=(3p,3p,3p)$ for $p \geq 23$ $(ii)$ $z=2$ analogously we get $(x,y,z)=(2,4,4) \Longrightarrow (a,b,c)=(2p,4p,4p)$ and permutations for $p \geq 29$