Let $ a$, $ b$, $ c$ be positive real numbers such that $ a + b + c = 1$. Prove inequality: \[ \frac{1}{bc + a + \frac{1}{a}} + \frac{1}{ac + b + \frac{1}{b}} + \frac{1}{ab + c + \frac{1}{c}} \leqslant \frac{27}{31}.\]
Problem
Source: Serbian National Olympiad 2008
Tags: inequalities, function, Cauchy Inequality, inequalities unsolved
14.04.2008 13:57
it's equavilent $ 9 \sum ab + 1 \ leq 108abc$
16.04.2008 07:16
Hong Quy wrote: it's equavilent $ 9 \sum ab + 1 \ leq 108abc$ Why :
16.04.2008 08:39
Hong Quy I think you just want to spam Please do not particpate mathlinks People can think bad about Vietnamese
16.04.2008 20:53
i don't spam. i use Cauchy $ \frac {a}{abc + a^2 + 1} = \frac {a}{abc + \frac {3a^2}{3} + \frac {27}{27}} \leq \frac {1}{31^2}(\frac {1}{bc} + \frac {9}{a} + 27^2)$ hence $ LHS \leq \frac {1}{31^2} ( \sum \frac {1}{bc} + 9\sum \frac {1}{a} + 3.27^2 ) \leq RHS$ it's equavilent with ineq $ 9 \sum ab + 1 \leq 108abc$
17.04.2008 04:46
Hong Quy wrote: i don't spam. i use Cauchy $ \frac {a}{abc + a^2 + 1} = \frac {a}{abc + \frac {3a^2}{3} + \frac {27}{27}} \leq \frac {1}{31^2}(\frac {1}{bc} + \frac {9}{a} + 27^2)$ hence $ LHS \leq \frac {1}{31^2} ( \sum \frac {1}{bc} + 9\sum \frac {1}{a} + 3.27^2 ) \leq RHS$ it's equavilent with ineq $ 9 \sum ab + 1 \leq 108abc$ But $ 9\sum{ab}+1 \geq 108abc$
17.04.2008 20:54
Can somebody post the solution? :
20.04.2008 05:01
$ f"(x) = ( \frac{1}{bc+x+\frac{1}{x}})" = \frac{ 2(x^3+x^2-3x-1-bc)}{(xbc+x^2+1)^3} \leq 0$ $ \forall x \in [0;1]$ Use Jensen's ineq we have : $ f(a) +f(b) + f(c) \leq 3 f(\frac{a+b+c}{3}) =3f(\frac{1}{3}) = \frac{27}{31}$ seem it 's wrong ! but i don't sure
20.04.2008 09:12
Hong Quy I think you just want to spam Please do not particpate mathlinks People can think bad about Vietnamese If you don 't sure please don't post It take many time to check a solution
20.04.2008 13:45
Hong Quy wrote: $ f"(x) = ( \frac {1}{bc + x + \frac {1}{x}})" = \frac { 2(x^3 + x^2 - 3x - 1 - bc)}{(xbc + x^2 + 1)^3} \leq 0$ $ \forall x \in [0;1]$ Use Jensen's ineq we have : $ f(a) + f(b) + f(c) \leq 3 f(\frac {a + b + c}{3}) = 3f(\frac {1}{3}) = \frac {27}{31}$ seem it 's wrong ! but i don't sure Hong Quy, it's obviously wrong because $ x$ is function of $ b$ and $ c.$
20.04.2008 15:18
alexilic wrote: Let $ a$, $ b$, $ c$ be positive real numbers such that $ a + b + c = 1$. Prove inequality: \[ \frac {1}{bc + a + \frac {1}{a}} + \frac {1}{ac + b + \frac {1}{b}} + \frac {1}{ab + c + \frac {1}{c}} \leqslant \frac {27}{31}. \] See my solution here
20.04.2008 18:00
later, i have solution for this problem. use Schur's ineq with $ a+b+c =1$ we have : $ abc \geq 4(ab+bc+ca) -1$ (*) by other form , this ineq's equavilent with : $ \sum \frac{a}{abc +a^2+1} \leq \frac{27}{31}$ use (*) $ \to$ we need prove that : $ \sum (1-\frac{31a(a+b+c)}{\sum ab + 9a^2 +8} \leq 0$ or $ \sum \frac{(7a+8c+10b)(c-a) -(7a+8b+10c)(a-b)}{a^2 + k} \leq 0$ where $ k = \frac{4 \sum ab +8}{9}$ later, $ \sum (a-b)^2\frac{17ab+8(a62+b^2)+10c(a+b)+k }{(a^2+k)(b^2+k)} \geq 0$ occur equal when : $ a=b=c=1/3$
21.04.2008 22:24
hello evry body , here is my solution ( hope it's right ) , it's very ugly the inequality is equivalent to : \[ \sum{\frac {1}{bc + a + \frac {1}{a}} - a} \leq \frac { - 4}{31} \] ( because $ a + b + c = 1$) \[ \sum{\frac {a^2(bc + a)}{abc + a^2 + 1}} \geq \frac {4}{31} \] \[ \sum{\frac { (a^2(bc + a)^2)}{(abc + a^2 + 1)(bc + a)}} \geq \frac {4}{31} \] but by cauchy shwarz : \[ LHS(\sum{(abc + a^2 + 1)(bc + a)}) \geq (\sum{a(bc + a)})^2 \] setting : $ r = abc,q = ab + ac + bc$ and since $ a + b + c = 1$ it's easy the check that: $ \sum{(abc + a^2 + 1)(bc + a)} = 2 - 2q + 5r + qr$ $ \sum{a(bc + a)} = 3r + 1 - 2q$ so we need to prove that: $ (3r + 1 - 2q)^2 - \frac {4(2 - 2q + 5r + qr)}{31} \geq 0$ or: $ 9r^2 + \frac {166r}{31} - \frac {376qr}{31} + \frac {23}{31} - \frac {116q}{31} + 4q^2 \geq 0$ now we put: $ f(r) = 9r^2 + \frac {166r}{31} - \frac {376qr}{31} + \frac {23}{31} - \frac {116q}{31} + 4q^2$ we have: $ f(r)' = 18r + \frac {166}{31} - \frac {376q}{31}$ it's easy to check that : $ f(r)'\geq0$ since $ q\leq \frac {1}{3}$ so f is an increasing function , and by shur : $ r\geq \frac {4q - 1}{9}$ thus :$ f(r)\geq f(\frac {4q - 1}{9}) = \frac {12q^2}{31} - \frac {28q}{31} + \frac {8}{31}$ hence it sufficies to prove , that : $ \frac {12q^2}{31} - \frac {28q}{31} + \frac {8}{31} \geq 0$ wich is equivalent to : $ \frac {4(3q - 1)(q - 2)}{31} \geq 0$ , wich is true since $ q\le\frac {1}{3}\leq 2$ @can_hang2007 : I really like your solution , is it a Intuition or a technique that I should learn? , thank you very much
22.04.2008 14:49
Please , someone confirm my solution! thank you
23.04.2008 11:07
anas wrote: hello evry body , here is my solution ( hope it's right ) , it's very ugly the inequality is equivalent to : \[ \sum{\frac {1}{bc + a + \frac {1}{a}} - a} \leq \frac { - 4}{31} \] ( because $ a + b + c = 1$) \[ \sum{\frac {a^2(bc + a)}{abc + a^2 + 1}} \geq \frac {4}{31} \] \[ \sum{\frac { (a^2(bc + a)^2)}{(abc + a^2 + 1)(bc + a)}} \geq \frac {4}{31} \] but by cauchy shwarz : \[ LHS(\sum{(abc + a^2 + 1)(bc + a)}) \geq (\sum{a(bc + a)})^2 \] setting : $ r = abc,q = ab + ac + bc$ and since $ a + b + c = 1$ it's easy the check that: $ \sum{(abc + a^2 + 1)(bc + a)} = 2 - 2q + 5r + qr$ $ \sum{a(bc + a)} = 3r + 1 - 2q$ so we need to prove that: $ (3r + 1 - 2q)^2 - \frac {4(2 - 2q + 5r + qr)}{31} \geq 0$ or: $ 9r^2 + \frac {166r}{31} - \frac {376qr}{31} + \frac {23}{31} - \frac {116q}{31} + 4q^2 \geq 0$ now we put: $ f(r) = 9r^2 + \frac {166r}{31} - \frac {376qr}{31} + \frac {23}{31} - \frac {116q}{31} + 4q^2$ we have: $ f(r)' = 18r + \frac {166}{31} - \frac {376q}{31}$ it's easy to check that : $ f(r)'\geq0$ since $ q\leq \frac {1}{3}$ so f is an increasing function , and by shur : $ r\geq \frac {4q - 1}{9}$ thus :$ f(r)\geq f(\frac {4q - 1}{9}) = \frac {12q^2}{31} - \frac {28q}{31} + \frac {8}{31}$ hence it sufficies to prove , that : $ \frac {12q^2}{31} - \frac {28q}{31} + \frac {8}{31} \geq 0$ wich is equivalent to : $ \frac {4(3q - 1)(q - 2)}{31} \geq 0$ , wich is true since $ q\le\frac {1}{3}\leq 2$ @can_hang2007 : I really like your solution , is it a Intuition or a technique that I should learn? , thank you very much ur solution's right and nice.
24.04.2008 06:03
anas wrote: hello evry body , here is my solution ( hope it's right ) , it's very ugly the inequality is equivalent to : \[ \sum{\frac {1}{bc + a + \frac {1}{a}} - a} \leq \frac { - 4}{31} \] ( because $ a + b + c = 1$) \[ \sum{\frac {a^2(bc + a)}{abc + a^2 + 1}} \geq \frac {4}{31} \] \[ \sum{\frac { (a^2(bc + a)^2)}{(abc + a^2 + 1)(bc + a)}} \geq \frac {4}{31} \] but by cauchy shwarz : \[ LHS(\sum{(abc + a^2 + 1)(bc + a)}) \geq (\sum{a(bc + a)})^2 \] setting : $ r = abc,q = ab + ac + bc$ and since $ a + b + c = 1$ it's easy the check that: $ \sum{(abc + a^2 + 1)(bc + a)} = 2 - 2q + 5r + qr$ $ \sum{a(bc + a)} = 3r + 1 - 2q$ so we need to prove that: $ (3r + 1 - 2q)^2 - \frac {4(2 - 2q + 5r + qr)}{31} \geq 0$ or: $ 9r^2 + \frac {166r}{31} - \frac {376qr}{31} + \frac {23}{31} - \frac {116q}{31} + 4q^2 \geq 0$ now we put: $ f(r) = 9r^2 + \frac {166r}{31} - \frac {376qr}{31} + \frac {23}{31} - \frac {116q}{31} + 4q^2$ we have: $ f(r)' = 18r + \frac {166}{31} - \frac {376q}{31}$ it's easy to check that : $ f(r)'\geq0$ since $ q\leq \frac {1}{3}$ so f is an increasing function , and by shur : $ r\geq \frac {4q - 1}{9}$ thus :$ f(r)\geq f(\frac {4q - 1}{9}) = \frac {12q^2}{31} - \frac {28q}{31} + \frac {8}{31}$ hence it sufficies to prove , that : $ \frac {12q^2}{31} - \frac {28q}{31} + \frac {8}{31} \geq 0$ wich is equivalent to : $ \frac {4(3q - 1)(q - 2)}{31} \geq 0$ , wich is true since $ q\le\frac {1}{3}\leq 2$ @can_hang2007 : I really like your solution , is it a Intuition or a technique that I should learn? , thank you very much I have another solution, everybody can enjoy it! We have the equivalent inequality : $ \sum {\frac {9a^2 + 9abc + 9 - 31a}{a^2 + abc + 1}} \geq 0$ Now we have the comment: Because of $ a + b + c = 1$ so that $ 0\leq a,b,c \leq 1$ Without loss of generality, we assume $ a \geq b \geq c$ But we also have the two monotonous sequences ( you can check it) * $ 9( a^2 + abc + 1) - 31a \leq 9(b^2 + abc + 1) - 31b \leq 9(c^2 + abc + 1) - 31c$ ( Note that $ 9( a + b) \leq 31)$ ** $ \frac {1}{ a^2 + abc + 1} \leq \frac {1}{ b^2 + abc + 1} \leq \frac {1}{ c^2 + abc + 1}$ Applying Chebyshev inequality for two sequences above, we have $ \sum{\frac {9(a^2 + abc + 1) - 31a}{ a^2 + abc + 1}} \geq \sum{\frac {9(a^2 + abc + 1) - 31a}{ 3}}. \sum{\frac {1}{ a^2 + abc + 1}}$ But it is easy to check by homogenious method the following inequality: $ a^2 + b^2 + c^2 + 3abc \geq \frac {4}{9}$ An elementary proof! Can you agree with me?
05.06.2008 23:54
sorry, i did not realize that
06.06.2008 07:43
omerftekin wrote: This inequality is a special case of İlham's Cauchy. Putting n=31 in Famous (Meshuur) İlham's Cauchy we get the solution. Post please, the İlham's Cauchy inequality here. Thx!
06.06.2008 19:45
cauchy schwarz bunyakovski inequalıty is specıal case of ılham's cauchy.are you serıous that you don't know this inequality.
06.06.2008 22:13
omerftekin wrote: cauchy schwarz bunyakovski inequalıty is specıal case of ılham's cauchy.are you serıous that you don't know this inequality. Do you enjoy to post spam like this? All your posts are full of non-sense contents like that. Please stop to do that.
28.01.2009 13:29
Let $ abc-ab-bc-ac+1=m$ and $ 2abc+2=n$. Inequality equilavents to $ \frac{-mn+m+n}{\frac{nm^2}{2}+1} \leq \frac{27}{31}$ $ \Longleftrightarrow$ $ 62(m+n) \leq n(27m^2+62m)+54$ $ n\leq \frac{56}{27}$ $ \Longrightarrow 62(m+n) \leq 62(m+\frac{56}{27})$. We will prove that $ 62(m+\frac{56}{27}) \leq n(27m^2+62m)+54$ By Schur's inequality $ (a+b+c)^3+9abc \geq 4(ab+bc+ac)(a+b+c)$ $ \Longrightarrow$ $ n \geq \frac{16-8m}{5}$ By $ AM$-$ GM$ $ (a+b)(b+c)(a+c) \leq \frac{8}{27}(a+b+c)^3= \frac{8}{27} \Longrightarrow$ $ m=abc-ab-bc-ac+1 \geq \frac{19}{27}$ $ \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{9}{(a+b+c)^2}>1 \Longrightarrow m<1 \Longrightarrow (2m+1)^2-\frac{292}{27}<0 \Longrightarrow$ $ (27m-19)(4m^2+4m-\frac{265}{27})\leq0 \Longrightarrow$ $ 108m^3+32m^2-341m+\frac{5035}{27}\leq0 \Longleftrightarrow$ $ 62(m+\frac{56}{27}) \leq \frac{16-8m}{5}.(27m^2+62m)+54 \leq n(27m^2+62m)+54$
28.01.2009 18:04
alexilic wrote: Let $ a$, $ b$, $ c$ be positive real numbers such that $ a + b + c = 1$. Prove inequality: \[ \frac {1}{bc + a + \frac {1}{a}} + \frac {1}{ac + b + \frac {1}{b}} + \frac {1}{ab + c + \frac {1}{c}} \leqslant \frac {27}{31}. \] I think it's easy. Using Am-Gm, we are easily to prove the stronger: $ (\frac {1}{bc + a + \frac {1}{a}})^{\frac {10}{9}} + (\frac {1}{ca + b + \frac {1}{b}})^{\frac {10}{9}} + (\frac {1}{ab + c + \frac {1}{c}})^{\frac {10}{9}} \leq\ 3 (\frac {9}{31})^{\frac {10}{9}}$ (with the same conditon) With this stronger, all of the proofs above can't solve it.
29.01.2009 21:58
How can you prove it? It seems like harder than original one. Could you please post that AM-GM solution?
01.02.2009 10:24
nguoivn wrote: alexilic wrote: Let $ a$, $ b$, $ c$ be positive real numbers such that $ a + b + c = 1$. Prove inequality: \[ \frac {1}{bc + a + \frac {1}{a}} + \frac {1}{ac + b + \frac {1}{b}} + \frac {1}{ab + c + \frac {1}{c}} \leqslant \frac {27}{31}. \] I think it's easy. Using Am-Gm, we are easily to prove the stronger: $ (\frac {1}{bc + a + \frac {1}{a}})^{\frac {10}{9}} + (\frac {1}{ca + b + \frac {1}{b}})^{\frac {10}{9}} + (\frac {1}{ab + c + \frac {1}{c}})^{\frac {10}{9}} \leq\ 3 (\frac {9}{31})^{\frac {10}{9}}$ (with the same conditon) With this stronger, all of the proofs above can't solve it. I cannot find the solution either. Could you please elaborate a little?
01.02.2009 10:34
Very sorry, my friend. I'll post my proof (but not now) because of some reason
04.04.2009 08:29
nguoivn wrote: alexilic wrote: Let $ a$, $ b$, $ c$ be positive real numbers such that $ a + b + c = 1$. Prove inequality: \[ \frac {1}{bc + a + \frac {1}{a}} + \frac {1}{ac + b + \frac {1}{b}} + \frac {1}{ab + c + \frac {1}{c}} \leqslant \frac {27}{31}. \] I think it's easy. Using Am-Gm, we are easily to prove the stronger: $ (\frac {1}{bc + a + \frac {1}{a}})^{\frac {10}{9}} + (\frac {1}{ca + b + \frac {1}{b}})^{\frac {10}{9}} + (\frac {1}{ab + c + \frac {1}{c}})^{\frac {10}{9}} \leq\ 3 (\frac {9}{31})^{\frac {10}{9}}$ (with the same conditon) With this stronger, all of the proofs above can't solve it. Now, here is my proof:
Attachments:
nguoivn1.doc (46kb)
10.08.2010 17:05
annn's solution is good.
10.08.2010 17:07
anns's solution is good
14.08.2010 06:23
alexilic wrote: Let $ a$, $ b$, $ c$ be positive real numbers such that $ a + b + c = 1$. Prove inequality: \[ \frac{1}{bc + a + \frac{1}{a}} + \frac{1}{ac + b + \frac{1}{b}} + \frac{1}{ab + c + \frac{1}{c}} \leqslant \frac{27}{31}.\] I only use the AG-GM and Cauchy-Schwarz: $LS=\sum\frac{a}{a(a+b)(a+c)+1}\\ =\sum\frac{a}{(1-b-c)(a+b)(a+c)+1}\\ =\sum\frac{a}{(a+b)(a+c)+1-(a+b)(b+c)(c+a)}$ By CauChy-Schwarz, conspicuous: $LS \le \sum\frac{a}{31^2}[\frac{12^2}{(a+b)(a+c)}+\frac{19^2}{1-(a+b)(b+c)(c+a)}]\\ =\sum\frac{12^2}{31^2}[\frac{a}{(a+b)(a+c)}]+\frac{19^2}{31^2}[\frac{a+b+c}{1-(a+b)(b+c)(c+a)}]=L$ On the other hand: $\sum\frac{a}{(a+b)(a+c)}=\frac{2(ab+bc+ca)}{(a+b)(b+c)(c+a)}\le \frac{9}{4}$ [because $(a+b)(b+c)(c+a)\ge \frac{8}{9}(ab+bc+ca)$] And: $\frac{1}{1-(a+b)(b+c)(c+a)}\le \frac{1}{1-[\frac{2(a+b+c)}{3}]^3}=\frac{27}{19}$ (AG-GM) So: $L\le \frac{12^2}{31^2}.\frac{9}{4}+\frac{19^2}{31^2}.\frac{27}{19}=\frac{27}{31}$ $\Rightarrow Q.E.D$
14.08.2010 07:46
BaronShadeNight wrote: alexilic wrote: Let $ a$, $ b$, $ c$ be positive real numbers such that $ a + b + c = 1$. Prove inequality: \[ \frac{1}{bc + a + \frac{1}{a}} + \frac{1}{ac + b + \frac{1}{b}} + \frac{1}{ab + c + \frac{1}{c}} \leqslant \frac{27}{31}.\] I only use the AG-GM and Cauchy-Schwarz: $LS=\sum\frac{a}{a(a+b)(a+c)+1}\\ =\sum\frac{a}{(1-b-c)(a+b)(a+c)+1}\\ =\sum\frac{a}{(a+b)(a+c)+1-(a+b)(b+c)(c+a)}$ By CauChy-Schwarz, conspicuous: $LS \le \sum\frac{a}{31^2}[\frac{12^2}{(a+b)(a+c)}+\frac{19^2}{1-(a+b)(b+c)(c+a)}]\\ =\sum\frac{12^2}{31^2}[\frac{a}{(a+b)(a+c)}]+\frac{19^2}{31^2}[\frac{a+b+c}{1-(a+b)(b+c)(c+a)}]=L$ On the other hand: $\sum\frac{a}{(a+b)(a+c)}=\frac{2(ab+bc+ca)}{(a+b)(b+c)(c+a)}\le \frac{9}{4}$ [because $(a+b)(b+c)(c+a)\ge \frac{8}{9}(ab+bc+ca)$] And: $\frac{1}{1-(a+b)(b+c)(c+a)}\le \frac{1}{1-[\frac{2(a+b+c)}{3}]^3}=\frac{27}{19}$ (AG-GM) So: $L\le \frac{12^2}{31^2}.\frac{9}{4}+\frac{19^2}{31^2}.\frac{27}{19}=\frac{27}{31}$ $\Rightarrow Q.E.D$ very nice
11.01.2021 10:13
Let $ a$, $ b$, $ c$ be positive real numbers such that $ a + b + c = 1$. Prove inequality: \[ \frac{1}{b^2 + a + \frac{1}{a}} + \frac{1}{c^2 + b + \frac{1}{b}} + \frac{1}{a^2+ c + \frac{1}{c}} \leqslant \frac{27}{31} \]\[ \frac{a}{b^2 + c + \frac{1}{c}} + \frac{b}{c^2 + a + \frac{1}{a}} + \frac{c}{a^2+b+ \frac{1}{b}} \leqslant \frac{9}{31} \]\[ \frac{a}{a^2+ b + \frac{1}{b}}+ \frac{b}{b^2 + c + \frac{1}{c}} + \frac{c}{c^2 + a+ \frac{1}{a}} \leqslant \frac{9}{31} \]
25.11.2024 12:35
Rewrite $a=\frac{x}{3},b=\frac{y}{3},c=\frac{z}{3}$. \[ \frac{1}{bc + a + \frac{1}{a}} + \frac{1}{ac + b + \frac{1}{b}} + \frac{1}{ab + c + \frac{1}{c}} \leqslant \frac{27}{31}\iff \sum{\frac{x}{xyz+3x^2+27}}\overset{?}{\leq} \frac{3}{31}\]\[\iff \sum{1-\frac{31x}{xyz+3x^2+27}}=\sum{\frac{27+3x^2+xyz-31x}{xyz+3x^2+27}}\overset{?}{\geq} 0\]WLOG $x\geq y\geq z$ (the inequality is symmetric). We have $27+3x^2+xyz-31x\leq 27+3y^2+xyz-31y\leq 27+3z^2+xy-31z$ since $(31-3x-3y)(x-y)\geq 0$ and $(31-3y-3z)(y-z)\geq 0$. Also $xyz+3x^2+27\geq xyz+3y^2+27\geq xyz+3z^2+27$. Hence we can apply Chebyshev on decreasing sequences $(27+3x^2+xyz-31x,27+3y^2+xyz-31y,27+3z^2+xyz-31z)$ and $\frac{1}{xyz+3x^2+27},\frac{1}{xyz+3y^2+27},\frac{1}{xyz+3z^2+27})$. This gives \[\sum{\frac{27+3x^2+xyz-31x}{xyz+3x^2+27}}\geq \frac{1}{3}\sum{(27+3x^2+xyz-31x)}\sum{\frac{1}{xyz+3x^2+27}}\overset{?}{\geq} 0\]Let's show that $81+3\sum{x^2}+3xyz\overset{?}{\geq} 31\sum{x}=93$ or $\sum{x^2}+xyz\geq 4$. Claim: If $x+y+z=3$ for positive reals, then $x^2+y^2+z^2+xyz\geq 4$. Proof: First, we observe that if $max\{x,y,z\}\geq 2$, then $LHS\geq 4$. Suppose that $x,y,z<2$. Assume that $x,y$ are on different sides with respect to $1$. Let $x+y=p,xy=q$. Note that by our assumption, $p>1$. \[x^2+y^2+(3-x-y)^2+xy(3-x-y)\overset{?}{\geq} 4\iff p^2-2q+p^2-6p+9+3q-pq\overset{?}{\geq} 4\]\[\iff 2p^2-6p+q-pq+5\overset{?}{\geq} 0\iff q\overset{?}{\leq} \frac{2p^2-6p+5}{p-1}=2p-4+\frac{1}{p-1}\]\[2x+2y-4+\frac{1}{x+y-1}=(x+y-3)+(x+y-1)+\frac{1}{x+y-1}\geq (x+y-3)+2=x+y-1\overset{?}{\geq} xy\]The last part follows by $(x-1)(y-1)\leq 0$ as desired.$\blacksquare$