In a scalene triangle $ABC$ $I$ is the incentr and $CN$ is the bisector of angle $C$. The line $CN$ meets the circumcircle of $ABC$ again at $M$. The line $l$ is parallel to $AB$ and touches the incircle of $ABC$. The point $R$ on $l$ is such. That $CI \bot IR$. The circumcircle of $MNR$ meets the line $IR$ again at S. Prpve that $AS=BS$.
Problem
Source: Izho 2020 problem 4
Tags: IZHO 2020, geometry
11.01.2020 12:09
IZHO 2020 P4 wrote: In a scalene triangle $ABC$ $I$ is the incentr and $CN$ is the bisector of angle $C$. The line $CN$ meets the circumcircle of $ABC$ again at $M$. The line $l$ is parallel to $AB$ and touches the incircle of $ABC$. The point $R$ on $l$ is such. That $CI \bot IR$. The circumcircle of $MNR$ meets the line $IR$ again at S. Prove that $AS=BS$. Let $MS\cap AB=K$. So, it suffices to show that $SK\perp AB$. Hence, it suffices to show that $INKS$ is a cyclic quadrilateral. So, $\angle RSM=\angle INB=\angle RNM\implies \angle INR=\angle INA$. This is what we are supposed to show in order to prove the conclusion. Now we can safely elimate the points $M,K,S$ and $\odot(MNR)$ from the diagram. So now restate the problem as follows. Restated Problem wrote: $CAB$ is a triangle with $C$ as its apex. Let the line $\ell$ be tangent to $\odot(I)$ and $\|$ to $AB$. Let $R\in\ell$ such that $\angle CIR=90^\circ$. Then show that $\angle ANC=\angle CNR$ For this just note that if $\ell\cap CI=K$ and the tangency point made by $\ell,AB$ with $\odot(I)$ be $X,D$ respectively then $\triangle KXI\cong\triangle NDI\implies \angle KRI=\angle NRI$. So $$\angle CNA=90^\circ-\angle DIN=90^\circ-\angle XIK=90^\circ-\angle XRI=90^\circ-\angle IRN=\angle CNR$$and this is what we were supposed to prove. $\blacksquare$
11.01.2020 17:07
RnstTrjyn wrote: In a scalene triangle $ABC$ $I$ is the incentr and $CN$ is the bisector of angle $C$. The line $CN$ meets the circumcircle of $ABC$ again at $M$. The line $l$ is parallel to $AB$ and touches the incircle of $ABC$. The point $R$ on $l$ is such. That $CI \bot IR$. The circumcircle of $MNR$ meets the line $IR$ again at S. Prpve that $AS=BS$. $S'\in IR, MS' \perp AB $. We know that $MS'$ is a perpendicular bisector of $AB $. So, it suffices to show that $MNS'R $ is a cyclic. Let $CN \cap l=T, MS' \cap AB=K , IR \cap AB=L$. So, $S'INK$ is a cyclic and $LNRT$ is a romb. Since $\angle INR=\angle ANI=\angle IS'M $. $\implies $ $MNS'R$ is a cyclic quadrilateral. $\blacksquare $
14.04.2020 16:25
Let $D$ and $D'$ be the tangency point of the incircle with side $BC$ and $l$ respectively and $K=CI\cap l$. Lemma 1:$IN=IK$ It is easy to show that $D,I,D'$ are collinear, $DD' \bot BC$ and $DD'\bot l$. Which implies $\triangle IDN \cong \triangle ID'K$ so, $IN=IK$. Lemma 2: $\angle KID'=\angle KRI$ $\angle KID'+ \angle D'IR=\angle D'RI + \angle D'IR=90$ $\Rightarrow \angle KID'=\angle KRI$ Lemma 3: $ID' \parallel SM$ From, Lemma 2 we get $IN=IK$ and $RI\bot NK$ so, $RK=RN$ and $\angle KRI=\angle IRD$. Now, $$\angle AID'=\angle KRI=\angle IRD=\angle SRD=\angle SMN=\angle SMA$$So, $ID' \parallel SM$. So, $SM$ is perpendicular to $BC$ and $M$ lies on the perpendicular bisector of $BC$. Which implies $AS=BS$.
25.12.2020 21:20
Let $CM\cap \ell=L$ and $SM\cap AB=K$. Since $AM=BM$, we need to prove that $SM\perp AB \Leftrightarrow \angle SKA=90^\circ \Leftrightarrow \angle NKM=90^\circ$ $\ell$ is parallel to $AB$ and tangent to the incircle of $ABC$ so we get $LI=IN$ then $LR=RN$. $\angle NMK=\angle NMS=\angle NRS=\angle NRI=\angle IRL=90^\circ - \angle ILR=90^\circ - \angle NLR=90^\circ - \angle LNA=90^\circ - \angle MNK$ so $\angle NMK+\angle MNK=90^\circ$ then $\angle NKM=90^\circ$ so we are done.
10.01.2021 02:59
[asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(12cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -100.59219832435913, xmax = 29.766446513520844, ymin = -23.31458978847737, ymax = 58.13826280303429; /* image dimensions */ pen qqwuqq = rgb(0,0.39215686274509803,0); pen qqttcc = rgb(0,0.2,0.8); pen zzttqq = rgb(0.6,0.2,0); /* draw figures */ draw(circle((-38.85426679570727,23.17090286129501), 25.2598109989657), linewidth(0.8) + red); draw((-61.75487012577496,12.511614947819677)--(-20.212684386442074,6.125391517189084), linewidth(0.8) + blue); draw((-20.212684386442074,6.125391517189084)--(-18.10347647059853,37.57447021757321), linewidth(0.8) + blue); draw((-18.10347647059853,37.57447021757321)--(-61.75487012577496,12.511614947819677), linewidth(0.8) + blue); draw(circle((-30.06658829741694,18.419910044237945), 10.654529948550824), linewidth(0.8) + red); draw((-30.06658829741694,18.419910044237945)--(-18.10347647059853,37.57447021757321), linewidth(0.8) + qqwuqq); draw((-52.96175661482762,32.7192443226779)--(-30.06658829741694,18.419910044237945), linewidth(0.8) + qqwuqq); draw(circle((-55.2405456581212,13.25602794370644), 19.596164709414403), linewidth(0.8) + linetype("4 4") + qqttcc); draw((-38.750836073468754,23.84371650789829)--(-61.75487012577496,12.511614947819677), linewidth(0.8) + qqwuqq); draw((-38.750836073468754,23.84371650789829)--(-20.212684386442074,6.125391517189084), linewidth(0.8) + qqwuqq); draw((-38.750836073468754,23.84371650789829)--(-42.69233626191577,-1.7956202141359503), linewidth(0.8) + qqwuqq); draw((-30.06658829741694,18.419910044237945)--(-42.69233626191577,-1.7956202141359503), linewidth(0.8) + qqwuqq); draw((-38.750836073468754,23.84371650789829)--(-36.209338960864144,8.584535359448523), linewidth(0.8) + qqwuqq); draw((-52.96175661482762,32.7192443226779)--(-42.69233626191577,-1.7956202141359503), linewidth(0.8) + qqwuqq); draw(circle((-37.480087517166446,16.214125933673404), 7.734691604947515), linewidth(0.8) + linetype("4 4") + zzttqq); draw((-30.06658829741694,18.419910044237945)--(-40.98377725610853,9.318503232504385), linewidth(0.8) + qqwuqq); draw((-52.96175661482762,32.7192443226779)--(-36.209338960864144,8.584535359448523), linewidth(0.8) + qqwuqq); draw((-30.06658829741694,18.419910044237945)--(-28.447699818398743,28.950731879074418), linewidth(0.8) + qqwuqq); draw((-30.06658829741694,18.419910044237945)--(-31.685476776435134,7.889088209401473), linewidth(0.8) + qqwuqq); draw((-30.06658829741694,18.419910044237945)--(-38.81922373811847,12.344518594566418), linewidth(0.8) + qqwuqq); draw((-52.96175661482762,32.7192443226779)--(-18.781508342620704,27.464761476002252), linewidth(0.8) + blue); /* dots and labels */ dot((-61.75487012577496,12.511614947819677),dotstyle); label("$A$", (-61.399403144342934,13.322153531972434), NE * labelscalefactor); dot((-20.212684386442074,6.125391517189084),dotstyle); label("$B$", (-19.906161290717083,7.017225611708979), NE * labelscalefactor); dot((-18.10347647059853,37.57447021757321),dotstyle); label("$C$", (-17.776118074411855,38.45666348437405), NE * labelscalefactor); dot((-30.06658829741694,18.419910044237945),linewidth(4pt) + dotstyle); label("$I$", (-29.704360085721135,19.115871080322634), NE * labelscalefactor); dot((-36.209338960864144,8.584535359448523),linewidth(4pt) + dotstyle); label("$N$", (-35.83888454868019,9.23247055666641), NE * labelscalefactor); dot((-42.69233626191577,-1.7956202141359503),linewidth(4pt) + dotstyle); label("$M$", (-42.31421592624809,-1.0769386102508611), NE * labelscalefactor); dot((-31.685476776435134,7.889088209401473),linewidth(4pt) + dotstyle); label("$D$", (-31.32319293011311,8.550856727448739), NE * labelscalefactor); dot((-28.447699818398743,28.950731879074418),linewidth(4pt) + dotstyle); label("$D'$", (-28.08552724132916,29.595683704544324), NE * labelscalefactor); dot((-52.96175661482762,32.7192443226779),linewidth(4pt) + dotstyle); label("$R$", (-52.623625093165394,33.42976149389372), NE * labelscalefactor); dot((-38.750836073468754,23.84371650789829),linewidth(4pt) + dotstyle); label("$S$", (-38.394936408246465,24.483579985411794), NE * labelscalefactor); dot((-23.923837633969722,28.25528472902737),linewidth(4pt) + dotstyle); label("$N'$", (-23.569835622762078,28.914069875326653), NE * labelscalefactor); dot((-40.98377725610853,9.318503232504385),linewidth(4pt) + dotstyle); label("$M'$", (-40.610181353203906,9.99928611453629), NE * labelscalefactor); dot((-38.81922373811847,12.344518594566418),linewidth(4pt) + dotstyle); label("$E$", (-38.480138136898674,13.066548346015807), NE * labelscalefactor); dot((-18.781508342620704,27.464761476002252),linewidth(4pt) + dotstyle); label("$F$", (-18.45773190362953,28.147254317456774), NE * labelscalefactor); dot((-32.135775483927084,29.51769470998862),linewidth(4pt) + dotstyle); label("$G$", (-31.834403302026363,30.192095805109787), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] Nice one $\color{black}\rule{25cm}{1pt}$ First let's add some points. Let $S'$ be the intersection of the perpendicular bisector of $AB$ with $RI$, let $N'$ be the intersection of $l$ with $CI$ and let $M'$ be the midpoint of $AB$. We start off with this killer lemma. $\color{red}\rule{25cm}{0.5pt}$ Lemma: $RN$ is tangent to the incircle of $ABC$. Proof (Sketch): Throw the configuration onto the complex plane, with the incircle as the unit circle and let $d=1$, and add the rest of the touch points. Then easily get $r$ since $R\in l$ and $CI \perp RI$. Then calculate $n$ and calculate the touch point (which we call $E$) of the other tangent of $R$ onto the incircle, to get that $RN$ contains $E$. Thus $RN$ is tangent to the incircle of $ABC$. $\color{red}\rule{25cm}{0.5pt}$ Now back to the problem. From our lemma we have that $\angle NRN' = 2 \angle N'RI = 2(90-\angle A- \frac{1}{2}\angle C)$. But this implies that $\angle RNA = \angle NRN'$. Now we have that $\angle RNM = \angle ANR + \angle ANM = \angle B + \frac{1}{2} \angle C$ But notice how we have that $S'M'NI$ is a cyclic quadrilateral, since we have that $\angle S'IN = S'M'N = 90$. This implies that $\angle RS'M = \angle M'NI = \angle B + \frac{1}{2} \angle C$. Thus we have that $RS'NM$ is a cyclic quadrilateral, this implies that $S' \equiv S$. Thus we have that $SA=SB$.
12.01.2021 18:35
WLOG let $CA > CB.$ First, observe that the reflection of $N$ across $I$ must lie on $\ell$ by homothety. This implies that \[\angle A + \frac{1}{2}\angle B = \angle (\ell, RI) =\angle IRN = \angle SMN,\]so $MS$ must pass through the midpoint of the arc $ACB,$ meaning that $MS$ perpendicularly bisects $AB.$ $\blacksquare$
21.11.2021 17:40
Let incircle of $ABC$ touches $l$ and $AB$ at $T$ and $D$, respectively. Consider $P = IR \cap AB$. Then easy to see the triangles $TIR$ and $PID$ are congruent which follows $PI = IR$. Therefore segment $NI$ is median and altitude of triangle $PNR$ which implies it's angle bisector, too. So $$\angle INR = \angle INP = \angle TIR = \angle ISM$$where the last one is true b/c of $MNSR$ is cyclic. Then $SM \perp AB$ which gives us required result.
13.12.2021 22:19
Suppose we cut the perpendicular $IR$ from $M$ to $AB$ at $K$. It is easy to prove that $MNKR$ is cyclic.
09.01.2025 10:58
Let $L$ be the midpoint of $NR$. Then $IL\parallel AB$ and after that just angle chasing