Since $A$ lies on the radical axis of $\Omega_1$ and $\Omega_2$, set $\varrho = \text{pow}(A, \Omega_1) = \text{pow}(A, \Omega_2).$ Then the inversion $\Psi$ with center $A$ and power $\varrho$ fixes $\Omega_1$ and $\Omega_2.$ Hence, $\Psi$ interchanges $\{M, C\}.$ Then since $\Omega$ is tangent to $\Omega_1$ at $M, \Psi(\Omega)$ is the line tangent to $\Omega_1$ at $C.$ However, $\Psi(\Omega)$ is also tangent to $\Omega_2$ because $\Omega$ and $\Omega_2$ are tangent. Therefore, $\Psi(\Omega)$ is a common tangent to $\Omega_1$ and $\Omega_2$ passing through $C.$ Similarly, we can show that there exists a common tangent to $\Omega_1$ and $\Omega_2$ passing through $D.$ Let these two tangents meet at $E$, and denote by $S$ and $T$ the points of tangency of $EC$ and $ED$ with $\Omega_2.$
[asy][asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(15cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 125.90308049860157, xmax = 243.67692567282657, ymin = 88.52559844242623, ymax = 148.12940530451223; /* image dimensions */
Label laxis; laxis.p = fontsize(10);
xaxis(xmin, xmax, Ticks(laxis, Step = 10., Size = 2, NoZero),EndArrow(6), above = true);
yaxis(ymin, ymax, Ticks(laxis, Step = 10., Size = 2, NoZero),EndArrow(6), above = true); /* draws axes; NoZero hides '0' label */
/* draw figures */
draw(circle((162.81796556704418,117.30338148064997), 22.272952473938865));
draw(circle((159.77238711367855,125.42492402295828), 13.59914123653413), linetype("2 2") + blue);
draw(circle((173.27868183110525,123.8385301950535), 9.938660703570978), linetype("2 2") + blue);
draw((171.274578812264,137.90848046917992)--(166.26990936151225,95.29955236055868));
draw((154.99740984006004,138.15819675260755)--(171.274578812264,137.90848046917992));
draw((154.99740984006004,138.15819675260755)--(166.26990936151225,95.29955236055868));
draw((164.9357204453974,138.0057281020608)--(209.94995472824428,119.53127330465229), red);
draw((161.88003185707186,111.99010076372485)--(209.94995472824428,119.53127330465229), red);
/* dots and labels */
dot((162.81796556704418,117.30338148064997),linewidth(3.pt) + dotstyle);
label("$O$", (163.18106279722585,117.91785371634148), NW * labelscalefactor);
dot((154.99740984006004,138.15819675260755),linewidth(3.pt) + dotstyle);
label("$M$", (153.3495070261601,138.80990972985617), NW * labelscalefactor);
dot((159.77238711367855,125.42492402295828),linewidth(3.pt) + dotstyle);
label("$O_1$", (160.00628957948587,126.41805297674208), N * labelscalefactor);
dot((173.27868183110525,123.8385301950535),linewidth(3.pt) + dotstyle);
label("$O_2$", (173.72950284326512,124.47222423038531), E * labelscalefactor);
dot((181.7076627244061,129.10438792965618),linewidth(3.pt) + dotstyle);
label("$N$", (182.12729006438377,129.4904141552001), ESE * 1.5);
dot((171.274578812264,137.90848046917992),linewidth(3.pt) + dotstyle);
label("$A$", (171.6812620576264,138.50267361201037), NE * labelscalefactor);
dot((166.26990936151225,95.29955236055868),linewidth(3.pt) + dotstyle);
label("$B$", (166.2534239756839,93.44137632795909), S * labelscalefactor);
dot((164.9357204453974,138.0057281020608),linewidth(3.pt) + dotstyle);
label("$C$", (164.71724338645487,139.01473380842003), N * 2);
dot((161.88003185707186,111.99010076372485),linewidth(3.pt) + dotstyle);
label("$D$", (161.23523405086908,109.92971465235058), SW * labelscalefactor);
dot((209.94995472824428,119.53127330465229),linewidth(3.pt) + dotstyle);
label("$E$", (210.8026610633255,118.73715003059696), E * labelscalefactor);
dot((177.05220084902166,133.03295953037014),linewidth(3.pt) + dotstyle);
label("$S$", (175.7777436289038,133.8941318443233), ENE * 4);
dot((174.8190141045,114.01995835041882),linewidth(3.pt) + dotstyle);
label("$T$", (174.65121119680254,111.7731313594254), S * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy][/asy]
Let $\Gamma \equiv \odot(ESO_2T)$ be the circle of diameter $\overline{EO_2}.$ Clearly the center $X$ of $\Gamma$ lies on the perpendicular bisector of $\overline{ST}.$ Hence, $O_1, O_2, X$ are collinear, implying that $\Omega_1$ and $\Gamma$ are tangent. Now consider the inversion $\Upsilon$ with center $E$ and power $EC \cdot ES = ED \cdot ET.$ Clearly $\Upsilon$ interchanges $\{C, S\}$ and $\{D, T\}$ and therefore $\Upsilon$ interchanges $\{\Omega_1, \Omega_2\}.$ Moreover, $\Upsilon(\Gamma) \equiv CD.$ Then since $\Omega_1$ and $\Gamma$ are tangent, it follows under inversion that $\Omega_2$ and $CD$ are tangent, as desired.