In the figure, $BC$ is a diameter of the circle, where $BC=\sqrt{257}$, $BD=1$ and $DA=12$. Find the length of $EC$ and hence find the length of the altitude from $A$ to $BC$. [asy][asy] import cse5; size(200); pair O=(2, 0), B=(0, 0), C=(4, 0), A=(1, 3), D, E; D=MP("D",D(IP(D(CP(O,B)),D(MP("A",D(A),N)--MP("B",D(B),W)))),NW); E=MP("E",D(IP(CP(O,B),D(MP("C",D(C),NE)--A),1)),NE); D(B--C); [/asy][/asy]
Problem
Source: NMTC Junior P4
Tags: geometry
enthusiast101
02.11.2019 14:40
Can someone post a diagram?
$\angle BEC= \angle BDC = \tfrac{1}{2} \pi$.
Let $AE=a, EC=b, CD=c$.
Then $c^2+1=257 \implies c=16$ by Pythagoras.
Now again, $AD^2+c^2 = (a+b)^2 \implies 144+256=(a+b)^2 \implies a+b=20$.
By Power of a Point, $a(a+b)=12 \cdot 13 \implies a= \frac{3}{5} \cdot 13 = \frac{39}{5} \implies b= EC=\frac{61}{5}$
Now, draw altitude $AX$ to $BC$ and let $BX=d, CX= \sqrt{257}-d$ and apply Pythagoras to get $AX= \frac{13 \cdot 16}{\sqrt{257}}$.
Edit: thanks purple planet for diagram.
ATGY
22.07.2020 13:48
Clearly $\angle{BDC} = 90^\circ$. By the Pythagorean Theorem, we see that $BD = 16$. Since $\angle{BDC} = 90^\circ$, this implies that $\angle{CDA} = 90^\circ$.
By Pythagorean Theorem, $AC = 20$. We let $AE = r$, which implies $EC = 20 - r$.
By power of a point, $156 = 20r$, $\implies r = \frac{39}{5}$. $\implies EC = \boxed{\frac{61}{5}}$.
Let $AY$ be the altitude to $BC$. By the pythagorean theorem, we can build a system of equations. Let $BY = q$.
$$\implies 169 - q^2 = AX^2$$$$\implies 143 + 2q\sqrt{257} = AX^2$$
Subtract the first equation from the seconds equation to get that:
$$\implies 26 - 2d\sqrt{257} = 0$$$$\implies 2q\sqrt{257} = 26$$$$\implies q = \frac{13}{\sqrt{257}}$$$$\implies AX^2 = \frac{169(257 - 1)}{257} = \frac{169\cdot256}{257}$$$$\implies AX = \boxed{\frac{13\cdot16}{257}}$$
primesarespecial
16.12.2020 07:06
A geometry problem I could solve