Let ABCD be a trapezoid with AB∥CD and inscribed in a circumference Γ. Let P and Q be two points on segment AB (A, P, Q, B appear in that order and are distinct) such that AP=QB. Let E and F be the second intersection points of lines CP and CQ with Γ, respectively. Lines AB and EF intersect at G. Prove that line DG is tangent to Γ.
Problem
Source:
Tags: geometry, trapezoid, geometry solved, Iberoamerican, projective geometry, Miquel point, geometry proposed
16.09.2019 23:12
Let F′≡DP∩Γ. By symmetry FF′∥CD. Pascal on DDF′FEC leads to the solution.
16.09.2019 23:17
Let M be the common midpoint of AB and CD and let X=CM∩Γ. We have C(P,Q;M,D)=C(A,B;M,D)=−1, so projecting onto Γ gives EXFC and AXBC harmonic, and thus AB,EF,XX and DD are concurrent at G.
17.09.2019 16:58
Solution. A humble approach. By symmetry, DCQP is an isosceles trapezoid and hence cyclic, so D is the center of spiral similarity taking ¯PQ to ¯EF, then it also carries ¯PE to ¯QF, implying that DPEG and DQFG are cyclic quadrilaterals. Therefore ∠GDE=∠GPE=∠DCEthus, GD touches Γ at D. ◼
17.09.2019 21:09
Generalization: Let A,B,P,Q,M,N be collinear points such that {A,B;M,N}=−1={P,Q;M,N}. Let C be a point outside line AB. Lines CN,CP,CQ cut ⊙ABC at D,E,F. Lines EF and AB intersect at point G. Prove that line DG is tangent to ⊙ABC. When N is ideal, we have the original problem.
17.09.2019 22:17
CDPQ - cyclic, ⟹GDPE is also cyclic (D is Miquel point of PQFE). Since GP∥CD, by Reim's GD is tangent to Γ.
20.09.2019 17:55
Consider the most natural'' projectivity on Γ that swaps E,F: Projection from C and intersection with line AB; reflection about the midpoint of AB; and projection again from C onto Γ. Since se have an involution with corresponding pairs (E,F),(A,B),(D,D), It follows that the lines AB, EF and DD (tangent) are concurrent (at G).
10.06.2021 00:18
Posting for Storage. Let M be the midpoint of BA and let CM∩Γ=T. Claim: GT is tangent to Γ. Proof) Let FM∩Γ=K, notice by the Butterfly Theorem that K∈TP as well. Now, by Pascal on TTCEFK, we get that G′=TT∩EF lies on MP and therefore on AB meaning that G′=G, therefore GT is indeed tangent to Γ. ◻ Claim: GD is tangent to Γ Proof) Let P∞ denote the point at infinity along AB and CD. −1=(A,B;M,P∞)C=(A,B;T,D)Using the previous Claim which proves that GT is tangent to the circle, we get that GD is also tangent to Γ as G∈AB. ◼
10.06.2021 09:09
Since ∠EDA=∠ECA=∠PCA=∠QDB, DE and DQ are isogonal in ∠ADB. So, under the inversion with center D and radius √DA.DB, E,Q are swapped and similarly, F,P are swapped. So, G goes to (DAB)∩(DPQ)=C. And since CD||AB, GD must be tangent to (ABD)=Γ, as desired. ◼
10.06.2021 15:57
Note that △CQB≅△DPA, and since PQ∥CD, we have CDPQ is cyclic. Also note that ∠DQP=∠DCP=∠DCE=∠DFE⟹DQFG is cyclic. Now ∠GDA=∠DAB−∠AGD=∠DAB−∠DFC=∠CAB=∠DBA, implying that DG is tangent to Γ, as desired. ◼
03.09.2021 00:52
Let E′=DQ∩Γ. Pascal on FCDDE′E finishes.
01.10.2021 20:23
Let M be the midpoint of ¯AB and T the second intersection of line ¯CM with Γ. Note that M is also the midpoint of ¯PQ. Let ∞ be the point at infinity of ¯BC. Then, −1=(AB;M∞)C=(AB;TD)−1=(PQ;M∞)C=(EF;TD).Thus, the tangents to Γ through T and D meet on both lines ¯AB and ¯EF, meaning these tangents meet at G, giving the desired result. ◼
02.10.2021 13:03
Let CM meet Γ again at K. Because DC∥AB, isogonality implies DAKB is a harmonic quadrilateral. Now, observe −1=(P,Q;M,CD∩AB)C=(E,F;K,D)so DEKF is also harmonic. Hence, DD,KK,AB,EF all concur at AB∩EF=G, which implies G∈DD, as required. ◼
24.09.2023 01:21
Let M=A+B2=P+Q2 and N=¯CM∩Γ. Then −1=(A,B;M,∞AB)C=(A,B;N,D),−1=(P,Q;M,∞AB)C=(E,F;N,D),which implies that NN and DD must both pass through G, where the latter gives the desired conclusion.
10.07.2024 09:51
[asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(6cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.4310156193294326, xmax = 3.916486231576577, ymin = -2.3511733624492717, ymax = 6.134876233881941; /* image dimensions */ /* draw figures */ draw(circle((0,1.865910841994344), 2.3940808821491473), linewidth(0.7)); draw((-2.382364333843369,2.102476797074702)--(2.3823643338433693,2.1024767970747016), linewidth(0.7)); draw((-1.5,0)--(1.5,0), linewidth(0.7)); draw((1.5,0)--(-2.177730037459594,2.8604535279652756), linewidth(0.7)); draw((1.5,0)--(0.9248417364229146,4.074143400590083), linewidth(0.7)); draw((-4.115356167135484,2.102476797074702)--(-1.5,0), linewidth(0.7)); draw((-2.382364333843369,2.102476797074702)--(-4.115356167135484,2.102476797074702), linewidth(0.7)); draw((-4.115356167135484,2.102476797074702)--(0.9248417364229146,4.074143400590083), linewidth(0.7)); draw((-1.5,0)--(-0.9248417364229141,4.074143400590083), linewidth(0.7)); draw((-1.5,0)--(2.1777300374595945,2.860453527965275), linewidth(0.7)); draw((-2.177730037459594,2.8604535279652756)--(-1.5,0), linewidth(0.7)); draw((1.5,0)--(2.1777300374595945,2.860453527965275), linewidth(0.7)); draw((0.9248417364229146,4.074143400590083)--(2.1777300374595945,2.860453527965275), linewidth(0.7)); /* dots and labels */ dot((1.5,0),dotstyle); label("C", (1.5611745060097364,-0.27295713477632183), NE * labelscalefactor); dot((2.3823643338433693,2.1024767970747016),dotstyle); label("B", (2.5541000373761498,1.9668981328267465), NE * labelscalefactor); dot((-1.5,0),dotstyle); label("D", (-2.029334522355703,-0.30986584335773349), NE * labelscalefactor); dot((-2.382364333843369,2.102476797074702),dotstyle); label("A", (-2.8183492423000496,1.5745329671523931), NE * labelscalefactor); dot((-1.2031874470492485,2.102476797074702),dotstyle); label("P", (-1.082778362396178,2.2209023384312183), NE * labelscalefactor); dot((1.2031874470492487,2.102476797074702),dotstyle); label("Q", (1.2302615917384775,1.6460786128616873), NE * labelscalefactor); dot((-2.177730037459594,2.8604535279652756),linewidth(4pt) + dotstyle); label("E", (-2.445164556596606,2.9944606009539276), NE * labelscalefactor); dot((0.9248417364229146,4.074143400590083),linewidth(4pt) + dotstyle); label("F", (0.9723465746180261,4.172116463301933), NE * labelscalefactor); dot((-4.115356167135484,2.102476797074702),linewidth(4pt) + dotstyle); label("G", (-4.223193996485299,2.3132675041055717), NE * labelscalefactor); dot((-0.9248417364229141,4.074143400590083),linewidth(4pt) + dotstyle); label("F′", (-0.8749567395520451,4.172116463301933), NE * labelscalefactor); dot((2.1777300374595945,2.860453527965275),linewidth(4pt) + dotstyle); label("E′", (2.2192763116828242,2.948278018116751), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] Introduce E′=DQ∩Γ and F′=DP∩Γ. Then DPEG is cyclic as, ∠PDE=∠FCE′=12[^BF−^BE′]=12[^BF−^AE]=∠BGF.Then to finish we have, ∠F′DG=∠CEF=∠DE′F′which is enough.