Problem

Source:

Tags: Perfect Square, odd, Sequence, recurrence relation, algebra, number theory



We consider the real sequence ($x_n$) defined by $x_0=0, x_1=1$ and $x_{n+2}=3x_{n+1}-2 x_{n}$ for $n=0,1,2,...$ We define the sequence ($y_n$) by $y_n=x^2_n+2^{n+2}$ for every nonnegative integer $n$. Prove that for every $n>0, y_n$ is the square of an odd integer.