Problem

Source: 2019 Belarusian National Olympiad 10.7

Tags: number theory, algebra, geometry, rectangle, analytic geometry



The numbers $S_1=2^2, S_2=2^4,\ldots, S_n=2^{2n}$ are given. A rectangle $OABC$ is constructed on the Cartesian plane according to these numbers. For this, starting from the point $O$ the points $A_1,A_2,\ldots,A_n$ are consistently marked along the axis $Ox$, and the points $C_1,C_2,\ldots,C_n$ are consistently marked along the axis $Oy$ in such a way that for all $k$ from $1$ to $n$ the lengths of the segments $A_{k-1}A_k=x_k$ and $C_{k-1}C_k=y_k$ are positive integers (let $A_0=C_0=O$, $A_n=A$, and $C_n=C$) and $x_k\cdot y_k=S_k$. a) Find the maximal possible value of the area of the rctangle $OABC$ and all pairs of sets $(x_1,x_2,\ldots,x_k)$ and $(y_1,y_2,\ldots,y_k)$ at which this maximal area is achieved. b) Find the minimal possible value of the area of the rctangle $OABC$ and all pairs of sets $(x_1,x_2,\ldots,x_k)$ and $(y_1,y_2,\ldots,y_k)$ at which this minimal area is achieved. (E. Manzhulina, B. Rublyov)