Is it true that for any nonzero rational numbers $a$ and $b$ one can find integers $m$ and $n$ such that the number $(am+b)^2+(a+nb)^2$ is an integer? (M. Karpuk)
Problem
Source: 2019 Belarusian National Olympiad 9.1
Tags: number theory
Filipjack
01.09.2019 10:27
The answer is no. For $(a,b)= \left(1, \frac{1}{2} \right)$ we have $(am+b)^2+(a+nb)^2=m^2+m+n+1+ \frac{n^2+1}{4},$ which can't be integer since $4 \not{\mid} ~n^2+1.$
lifeismathematics
28.12.2022 21:04
$(am+b)^2+(a+bn)^2=a^2m^2+b^2+2amb+a^2+b^2n^2+2abn+a^2+b^2 \implies a^2m^2+2amb+b^2n^2+2abn$ needs to be an integer
set $a=\frac{p}{q}$ , for $p,q\in \mathbb{Z}$ and $\gcd(p,q)=1$ similarly $b=\frac{r}{s}$ , for $r,s \in \mathbb{Z} , \gcd(r,s)=1$
so we must have $q^2\cdot s| s\cdot p^2\cdot m^2+2p\cdot r\cdot m \cdot q$ and $qs^2|r^2\cdot n^2 \cdot q+2p\cdot r\cdot s\cdot n \qquad \qquad (\spadesuit)$
if we take $m=p\cdot t$ and $n= q\cdot u$ s.t. $\gcd (t,q^2s)=1$ and $\gcd(u,qs^2)=1$
then clearly we can observe that $(\spadesuit)$ don't holds good hence we get not necessarily $(am+b)^2+(a+nb)^2$ is an integer for $a,b\in \mathbb{Q}$ and $m,n \in \mathbb{Z}$ $\blacksquare$
math_comb01
13.05.2023 12:59
We claim the answer is NO,
It is not possible to find such $m,n$ for;
$a=\frac{p}{q}$, $b=\frac{r}{s}$
$q,s$ have prime factors of form $4k+3$,
$q | r$
$(q,s)=1$
Note the given condition is equivalent to $a^2(m^2+1)+2ab(m+n)+b^2(n^2+1)$ is integer , so it suffices to prove $v_p(a^2(m^2+1)+2ab(m+n)+b^2(n^2+1)) <0$ for some prime $p$ Choose a prime factor $a$ of $q$ of form $4k+3$ then $v_p(a^2(m^2+1))<0$
while $v_p(b^2(n^2+1))>0$ and $v_p(2ab(m+n)) \geq 0$ Hence the claim $\blacksquare$