Problem

Source: 2019 MEMO Problem T-8

Tags: number theory, MEMO 2019, memo, Pell equations



Let $N$ be a positive integer such that the sum of the squares of all positive divisors of $N$ is equal to the product $N(N+3)$. Prove that there exist two indices $i$ and $j$ such that $N=F_iF_j$ where $(F_i)_{n=1}^{\infty}$ is the Fibonacci sequence defined as $F_1=F_2=1$ and $F_n=F_{n-1}+F_{n-2}$ for $n\geq 3$. Proposed by Alain Rossier, Switzerland