Problem

Source: 2019 Serbia TST P6

Tags: combinatorics, number



A figuric is a convex polyhedron with $26^{5^{2019}}$ faces. On every face of a figuric we write down a number. When we throw two figurics (who don't necessarily have the same set of numbers on their sides) into the air, the figuric which falls on a side with the greater number wins; if this number is equal for both figurics, we repeat this process until we obtain a winner. Assume that a figuric has an equal probability of falling on any face. We say that one figuric rules over another if when throwing these figurics into the air, it has a strictly greater probability to win than the other figuric (it can be possible that given two figurics, no figuric rules over the other). Milisav and Milojka both have a blank figuric. Milisav writes some (not necessarily distinct) positive integers on the faces of his figuric so that they sum up to $27^{5^{2019}}$. After this, Milojka also writes positive integers on the faces of her figuric so that they sum up to $27^{5^{2019}}$. Is it always possible for Milojka to create a figuric that rules over Milisav's? Proposed by Bojan Basic