Problem

Source: BMO Shortlist 2017 G8

Tags: geometry, excircle, concurrent, concurrency, circumcircle



Given an acute triangle $ABC$ ($AC\ne AB$) and let $(C)$ be its circumcircle. The excircle $(C_1)$ corresponding to the vertex $A$, of center $I_a$, tangents to the side $BC$ at the point $D$ and to the extensions of the sides $AB,AC$ at the points $E,Z$ respectively. Let $I$ and $L$ are the intersection points of the circles $(C)$ and $(C_1)$, $H$ the orthocenter of the triangle $EDZ$ and $N$ the midpoint of segment $EZ$. The parallel line through the point $l_a$ to the line $HL$ meets the line $HI$ at the point $G$. Prove that the perpendicular line $(e)$ through the point $N$ to the line $BC$ and the parallel line $(\delta)$ through the point $G$ to the line $IL$ meet each other on the line $HI_a$.