Problem

Source: RMM Shortlist 2017 N2

Tags: number theory, palindromes, binary representation



Let $x, y$ and $k$ be three positive integers. Prove that there exist a positive integer $N$ and a set of $k + 1$ positive integers $\{b_0,b_1, b_2, ... ,b_k\}$, such that, for every $i = 0, 1, ... , k$ , the $b_i$-ary expansion of $N$ is a $3$-digit palindrome, and the $b_0$-ary expansion is exactly $\overline{\mbox{xyx}}$. proposed by Bojan Basic, Serbia