Determine all functions $f$ from the set of non-negative integers to itself such that $f(a + b) = f(a) + f(b) + f(c) + f(d)$, whenever $a, b, c, d$, are non-negative integers satisfying $2ab = c^2 + d^2$.
Problem
Source: RMM Shortlist 2016 A1
Tags: functional equation, algebra, functional equation in N
09.07.2019 06:08
Let $P(a,b,c,d)$ be the assertion $f(a+b) = f(a)+f(b)+f(c)+f(d)$ for $2ab=c^2+d^2$. Clearly $f(0) = 0$. Let $f(1) = n$. $P(a,a,a,a): f(2a)=4f(a)\implies f(2)=4n, f(4) = 16n$. $P(2,1,2,0): f(3) = 9n; P(4,1,2,2): f(5) = 25n$. Now suppose $f(k) = k^2n \forall k < m, m > 5$. (Note this is true for $m=6$.) We want to show $f(m) = m^2n$. If $m$ is even, we are trivially done ($f(m) = 4f(\frac{m}{2})$). Else note that $f(c_1) + f(d_1) = f(c_2) + f(d_2)$ whenever $c_1^2 + d_1^2 = c_2^2 + d_2^2 = x$ by comparing $P(x,2,2c_1,2d_1)$,$P(x,2,2c_2,2d_2)$. Since $m^2 + \frac{m-5}{2}^2 = (m-2)^2 + \frac{m+3}{2}^2$ and the other 3 values are $<m$, we are done. Hence $f(m) = m^2n$ for some fixed $n\in \mathbb{N}_0$ are the only solutions.
09.07.2019 14:26
Wow,nice!
09.07.2019 15:14
BAdly mistaken
09.07.2019 15:23
Pluto1708 wrote: Wait isnt this RMM 2019 A1 also? That is the source. Read the source at the front of the page.
09.07.2019 16:28
JustKeepRunning wrote: Pluto1708 wrote: Wait isnt this RMM 2019 A1 also? That is the source. Read the source at the front of the page. It is written RMM 2016 not 2019.
28.04.2020 19:23
Let the functional equation be $P(a,b,c,d)$. Claim: $ f(n)=kn^2 $,where $ k=f(1) $ satisfies the condition. Proof : First,easily we get $ f(0)=0$ .$ P(n,n,n,n)$ implies $f(2n)=4f(n)$,in particular $ f(2)=4k$ $P(n^2,1,n,n)$ implies $f(n^2+1)=f(n^2) +k+2f(n) $ $P(n^2,2,2n,0)$ implies $ f(n^2+2)=f(n^2)+4k+f(2n) =f(n^2)+4k +4f(n) $ $P(n^2+1,1,n+1,n-1)$ implies $f(n^2+2)=f(n^2+1)+k+f(n+1) +f(n-1) $ Expessing only in $ f(n),f(n+1), f(n-1) $ we obtain $ f(n+1)=2f(n)-f(n-1)+2k$ Simple induction shows that $ f(n)=kn^2$ for all non-negative integers n,which concludes the proof.
09.07.2020 17:28
We will first prove the following lemma: Lemma:For every positive integer $ n \geq 2 $ there are positive integers $ a $ and $ b $ with $ a+b=n $ for which there are nonnegative integers $ c $ and $ d $ such that $ 2ab=c^{2}+d^{2} $. Proof:From Lagrange four square theorem we have that there are nonnegative integers $ x,y,z,t $ with $ n=x^{2}+y^{2}+z^{2}+t^{2} $.If $ n $ isn't a perfect square,at least two of $ x,y,z,t $ are positive.Assume that $ x,y>0 $.Let $ a=x^{2}+z^{2} $ and $ b=y^{2}+t^{2} $.Then we can consider $ c=|xy-zt+xt+yz| $ and $ d=|xy-zt-xt-yz| $.If $ n $ is a perfect square,let $ p $ be a prime divisor of $ n $.Take $ a=pa',b=pb',c=pc',d=pd' $ where $ 2a'b'=c'^{2}+d'^{2} $ and $ a'+b'=\frac{n}{p} $(which isn't a perfect square). Now we will prove by strong induction that $ f(n)=n^{2}f(1) $. For $ a=b=c=d=0 $ we get $ f(0)=0 $. Now assume that there is $ n \geq 2 $ such that $ f(k)=k^{2}f(1) $ for any $ k < n $. From the lemma we have $ a,b,c,d<n $ such that $ 2ab = c^{2} +d^{2} $ and $ a+b=n $,which implies that $ f(n)=n^{2}f(1) $.