Problem

Source: Peru IMO TST 2018 p5

Tags: arithmetic sequence, floor function, recurrence relation, algebra, function



Let $d$ be a positive integer. The seqeunce $a_1, a_2, a_3,...$ of positive integers is defined by $a_1 = 1$ and $a_{n + 1} = n\left \lfloor \frac{a_n}{n} \right \rfloor+ d$ for $n = 1,2,3, ...$ . Prove that there exists a positive integer $N$ so that the terms $a_N,a_{N + 1}, a_{N + 2},...$ form an arithmetic progression. Note: If $x$ is a real number, $\left \lfloor x \right \rfloor $ denotes the largest integer that is less than or equal to $x$.