Problem

Source: Iran MO 2019 , secound round , day 2 , p5

Tags: combinatorics, Game Theory, algebra



Ali and Naqi are playing a game. At first, they have Polynomial $P(x) = 1+x^{1398}$. Naqi starts. In each turn one can choice natural number $k \in [0,1398]$ in his trun, and add $x^k$ to the polynomial. For example after 2 moves $P$ can be : $P(x) = x^{1398} + x^{300} + x^{100} +1$. If after Ali's turn, there exist $t \in R$ such that $P(t)<0$ then Ali loses the game. Prove that Ali can play forever somehow he never loses the game!