In a triangle $ABC$, $\angle A$ is $60^\circ$. On sides $AB$ and $AC$ we make two equilateral triangles (outside the triangle $ABC$) $ABK$ and $ACL$. $CK$ and $AB$ intersect at $S$ , $AC$ and $BL$ intersect at $R$ , $BL$ and $CK$ intersect at $T$. Prove the radical centre of circumcircle of triangles $BSK, CLR$ and $BTC$ is on the median of vertex $A$ in triangle $ABC$. Proposed by Ali Zamani
Problem
Source: Iranian TST
Tags: TST, Iranian TST, geometry, Iran
12.04.2019 20:51
My solution: Let $KR\cap LS=M$.Let $MK\cap \odot (BKS)=X$,$ML\cap \odot (CLR) =Y $. By angle-chasing we can get that $SR\parallel KL $.On the other hand $\angle RXS=\angle MXS=\angle KBS=60=\angle MYR=\angle SYR $ so $XSRY $ is cyclic($A $ also lies on that circle since $\angle A=60$) then Reim's theorem implies that $KXYL $ is cyclic $\implies$ $MX\cdot MK=MY\cdot ML $ which means $M $ lies on radical axis of $\odot (BKS) $ and $\odot(CLR) $. Let $KB\cap CL=H $.Angle-chasing yields that $H\in \odot(BCT) $ $\textbf {Claim 1} $:$M$ lies on $A $-median. $\textbf {Proof}:$Let $\angle MSR=x $,$\angle MRS=y $. Sine Law in triangles $\triangle AKR,ALS $: $\frac {SL}{RK}=\frac {AL}{AK}\cdot \frac {sin (60-y)}{sin (60-x)}=\frac {AC}{AB}\cdot \frac {sin (60-y)}{sin (60-x)}=\frac {sin B}{sin C}\cdot \frac {sin (60-y)}{sin (60-x)}$ but since $KL\parallel SR $ $\frac {sin y}{sin x}=\frac {MS}{MR}=\frac {SL}{RK}=\frac {sin B}{sin C}\cdot \frac {sin (60-y)}{sin (60-x)}$ but from Trig Ceva in triangle $\triangle ASR $ we have $\frac {sin MAS}{sin MAR}\cdot \frac {sin (60-y)}{sin (60-x)}\cdot \frac {sin x}{sin y} =1$ so $\frac {sin B}{sin C}=\frac {sin MAS}{sin MAR}$ then Ratio Lemma yields that $M $ lies on $A $-median. $\textbf {Claim 2}:$ $H $ lies on $A $-median. $\textbf {Proof}:$ Sine Law in triangles $\triangle HAB,HAC,HBC $: $\frac {sin B}{sin C}=\frac{sin (60+C)}{sin (60+B)}=\frac{HB}{HC}=\frac {HB}{HA}\cdot \frac {HA}{HC}=\frac {sin HAB}{sin HAC}$ again Ratio Lemma yields that $H $ lies on $A $-median. So $A,M,H $ are collinear.Now let $AH\cap \odot (ASRXY)=G$ By easy angle-chasing we get that $G\in \odot (BTC) $ again by easy angle-chasing we get that $KXGH $ is cyclic which means $MX\cdot MK=MG\cdot MH $ so $M $ is radical center of $\odot (BSK),\odot (CLR),\odot (BTC) $.done.
13.04.2019 15:13
tenplusten wrote: Let $KB\cap CL=H $.Angle-chasing yields that $H\in \odot(BCT) $ I think you are wrong
13.04.2019 15:35
abbosjon2002 wrote: tenplusten wrote: Let $KB\cap CL=H $.Angle-chasing yields that $H\in \odot(BCT) $ I think you are wrong No it is true. Just do some angle chasing.
13.04.2019 22:42
Do the same as: tenplusten wrote: Let $KR\cap LS=M$. Let $MK\cap \odot (BKS)=X$ and $ML\cap \odot (CLR) =Y$. By angle-chasing we can get that $SR\parallel KL $. On the other hand, $\angle RXS=\angle MXS=\angle KBS=60^{\circ}=\angle MYR=\angle SYR $ so $XSRY $ is cyclic ($A $ also lies on that circle since $\angle A=60^{\circ}$) Then Reim implies that $KXYL $ is cyclic so $MX\cdot MK=MY\cdot ML $ and thus $M $ lies on radical axis of $\odot (BKS) $ and $\odot(CLR) $. Let $KB\cap CL=H $. Angle-chasing yields that $H\in \odot(BCT).$ Let $\odot(ABK)$ and $\odot(ACL)$ meet again at $T'$. Easily we see $B, T', L$ collinear and $C, T', K$ collinear so $T=T'$. Then $\angle STR = 120^{\circ}$ so $T \in \odot(ASRXY)$. Also, by $AB \parallel CL$ and $AC \parallel BK$ we have $ABHC$ parallelogram so $\angle BHC = 60^{\circ} \implies H \in \odot(BTC)$ and $H$ is on the median. Next we have \[\angle ABT = \angle BLC = \angle TAC \quad \text{and} \quad \angle ACT = \angle CKB = \angle TAB,\]so $T$ is the spiral center sending $BA \mapsto AC$ i.e. $T$ is the A-Dumpty point and lies on the symmedian. Then by DDIT or isogonal line lemma whichever you like on $\{S, R\}$ and $\{K, L\}$ wrt $\angle A$ gives $T, M$ isogonal, so $M$ lies on the median. Finally tenplusten wrote: Let $AM\cap \odot (ASRXY)=G$. By easy angle-chasing we get that $KXGH $ is cyclic, which means $MX\cdot MK=MG\cdot MH $, so $M $ is radical center of $\odot (BSK),\odot (CLR),\odot (BTC) $ and we are done.
16.04.2019 12:58
Let $\odot (BKS)\cap \odot (BTC)=P ,\odot (BLR)\cap \odot (BTC)=Q $ ,$BP\cap AC=X ,CQ\cap AB=Y $ and $BP\cap CQ=Z $ be the radical center.By angle-chasing $CPSX,BQRY $ are cyclic hence $XS\parallel BR $,$YR\parallel CS $.So by Thales $\frac {AX}{AC}=\frac{AS\cdot AR}{AB\cdot AC}$ Analogously $\frac {AY}{AB}=\frac{AS\cdot AR}{AB\cdot AC}$ so $\frac {AY}{AB}=\frac {AX}{AC}$.Hence Ceva's theorem implies that $AZ$ bisects $BC $ and we are done.
02.08.2019 17:50
Here is my solution for this problem. I have the same idea as Systematicworker, but a little bit different Solution Let $D$ be radical center of $(BCT)$, $(KBS)$, $(LCR)$; $E$ $\equiv$ $BD$ $\cap$ $AC$; $F$ $\equiv$ $CD$ $\cap$ $AB$, $V$ $\equiv$ $BD$ $\cap$ $CS$, $U$ $\equiv$ $CD$ $\cap$ $BR$ We have: $(ACER) = (SCVT)$ $\Leftrightarrow$ $\dfrac{\overline{EA}}{\overline{EC}} : \dfrac{\overline{RA}}{\overline{RC}} = \dfrac{\overline{VS}}{\overline{VC}} : \dfrac{\overline{TS}}{\overline{TC}}$ $\Leftrightarrow$ $\dfrac{\overline{EA}}{\overline{EC}} = \dfrac{\overline{RA}}{\overline{RC}} . \dfrac{\overline{VS}}{\overline{VC}} . \dfrac{\overline{TC}}{\overline{TS}}$ $\Leftrightarrow$ $\dfrac{\overline{EA}}{\overline{EC}} = \dfrac{\overline{VS}}{\overline{VC}} . \dfrac{\overline{BA}}{\overline{BS}}$ Similarly: $\dfrac{\overline{FA}}{\overline{FB}} = \dfrac{\overline{UR}}{\overline{UB}} . \dfrac{\overline{CA}}{\overline{CR}}$ Then: $\dfrac{\overline{EA}}{\overline{EC}} = \dfrac{\overline{FA}}{\overline{FB}}$ $\Leftrightarrow$ $\dfrac{\overline{VS}}{\overline{VC}} . \dfrac{\overline{BA}}{\overline{BS}} = \dfrac{\overline{UR}}{\overline{UB}} . \dfrac{\overline{CA}}{\overline{CR}}$ $\Leftrightarrow$ $\dfrac{\overline{ST}}{\overline{CK}} . \dfrac{\overline{BA}}{\overline{BS}} = \dfrac{\overline{RT}}{\overline{BL}} . \dfrac{\overline{CA}} {\overline{CR}}$ $\Leftrightarrow$ $\dfrac{ST . AB}{BS} = \dfrac{RT . AC}{CR}$ $\Leftrightarrow$ $\dfrac{AS . AK}{KS} = \dfrac{AR . AL}{LR}$ $\Leftrightarrow$ $\dfrac{AT . AK}{AK} = \dfrac{AT . AL}{AL}$ $\Leftrightarrow$ $AT = AT$ which is alway true So: $EF$ $\parallel$ $BC$ or $AD$ passes through midpoint of $BC$ Hence: radical center of $(BCT)$, $(KBS)$, $(LCR)$ lies on $A$ - median of $\triangle ABC$
19.01.2020 02:26
21.05.2022 11:03
$T$ is just the Fermat point of $\triangle ABC$, i.e. $\angle BTC = \angle CTA = \angle ATB = 120^\circ$. Let $M = \overline{KB} \cap \overline{LC}$ ; $X = \odot(BKS) \cap \odot(BTC) \ne B$ ; $Y= \odot(CLR) \cap \odot(BTC) \ne C$ ; $\overline{BX} \cap \overline{CY}$ ; $P = \overline{SX} \cap \overline{LY}$ ; $Q = \overline{RY} \cap \overline{KX}$. [asy][asy] size(250); pair M=dir(-80),L=dir(40),K=dir(160),A=0.47*L+0.53*K,B=extension(A,foot(A,K,(L+M)/2),K,M),C=extension(A,foot(A,L,(K+M)/2),L,M),T=extension(C,K,B,L),S=extension(K,T,A,B),R=extension(L,T,A,C),X=2*foot(B,circumcenter(B,S,K),circumcenter(B,T,C))-B,Y=2*foot(C,circumcenter(C,R,L),circumcenter(B,T,C))-C,N=extension(B,X,C,Y),P=extension(S,X,L,Y),Q=extension(K,X,R,Y); dot("$A$",A,dir(A)); dot("$K$",K,dir(K)); dot("$L$",L,dir(L)); dot("$M$",M,dir(M)); dot("$B$",B,dir(180)); dot("$C$",C,dir(30)); dot("$T$",T,dir(-90)); dot("$S$",S,dir(220)); dot("$R$",R,dir(0)); dot("$X$",X,dir(30)); dot("$Y$",Y,dir(200)); dot("$N$",N,dir(70)); dot("$Q$",Q,dir(Q)); dot("$P$",P,dir(P)); draw(A--B--C--A^^R--S,orange); draw(K--L--M--K,red); draw(circumcircle(K,S,B)^^circumcircle(L,R,C),blue); draw(K--R^^L--S^^A--M^^B--N^^C--N,brown); draw(B--L^^C--K^^A--T,fuchsia); draw(circumcircle(B,T,C),green); draw(L--P--S^^K--Q--R,purple); [/asy][/asy] We want to show $N$ lies on $A$-median of $\triangle ABC$. Angle chase shows $P,Q \in \odot(BTC)$. Pascal on $BXQYCT$ wrt $\odot(BTC)$ gives points $K,N,R$ are collinear. Similarly points $L,N,S$ are collinear. Thus $N = \overline{KR} \cap \overline{LS}$. Now from cyclic quad $ASTR$ we obtain $\triangle ASR$ is equilateral. Then $\triangle ASR$ and $\triangle MLK$ are homothetic, i.e. $\overline{AM},\overline{SL},\overline{RK}$ concur. So $N \in \overline{AM}$. Now $ABMC$ is a parallelogram, i.e. $AM$ is the $A$-median of $\triangle ABC$, and we are done. $\blacksquare$
18.10.2023 14:36
Let $X,Y = (BSK) , (CRL) \cap (BTC)$ respectively and let $M$ be the midpoint of $BC$. By a simple angle chasing we get that $\angle RYT , \angle RYL = \angle B , 60^{\circ}$ respectively. Also note that $\frac{TR}{RL} = \frac{sin \angle TCA}{sin 60} . \frac{CT}{CL}$ and we also have $CL=CA$ and since $T$ is $A-$dumpty point(coz $\angle BTC =120 = 2\angle A$ and $AT$ is symmedian since it passes through the point $D$ st $BCD$ is equilateral and $DB,DC$ would be both tangent to $(ABC)$) , $\angle TCA = \angle MAC$. So : $$\frac{sin \angle YCB}{sin \angle YCA} = \frac{sin \angle YLR}{sin \angle YTR} = \frac{YT}{YL} = \frac{RT}{RL} . \frac{sin 60}{sin \angle B} = \frac{sin \angle TCA}{sin 60} . \frac{CT}{CA} . \frac{sin 60}{sin \angle B} = \frac{sin \angle MAC}{sin 60} . \frac{CT}{CA} . \frac{sin 60}{sin \angle B}$$Also note that $\frac{CT}{BT} = \frac{AB}{AC} ^2$(a well-known property of Dumpty point). So multiplying everything , since $\frac{sin \angle MAC}{sin \angle MAB} = \frac{AB}{AC}$ , we're done by sine ceva.
24.01.2024 22:17
[asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(12cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -9.496447482895586, xmax = 9.90097533625794, ymin = -4.0521092975724144, ymax = 9.39930203592519; /* image dimensions */ pen qqwuqq = rgb(0,0.39215686274509803,0); pen zzttqq = rgb(0.6,0.2,0); pen ffvvqq = rgb(1,0.3333333333333333,0); pen fuqqzz = rgb(0.9568627450980393,0,0.6); pen ccqqqq = rgb(0.8,0,0); pen zzttff = rgb(0.6,0.2,1); draw(arc((-4.02,4.54),0.5831536705262192,-98.37302667478242,-38.37302667478242)--(-4.02,4.54)--cycle, linewidth(2) + qqwuqq); draw(circle((0.46675743718994234,1.5195681694179295), 5.408696769405049), linewidth(0.4) + qqwuqq); draw(circle((-3.326565532290348,2.7909905478790735), 1.8814583239115648), linewidth(0.4) + blue); draw(circle((-6.110533339601777,18.109086391597195), 15.454923215754416), linewidth(0.4) + blue); draw(circle((-3.3792281253494076,1.5880119115596625), 2.127604775792008), linewidth(0.4) + qqwuqq); draw(circle((-0.4260614996865803,-1.4396507379520291), 4.913840979217317), linewidth(0.4) + blue); /* draw figures */ draw((-4.02,4.54)--(-4.7,-0.08), linewidth(0.4)); draw((xmin, -0.7918240064698419*xmin + 1.3568674939912362)--(xmax, -0.7918240064698419*xmax + 1.3568674939912362), linewidth(0.4)); /* line */ draw((-4.7,-0.08)--(4.435402825585811,-2.155190941671777), linewidth(0.4)); draw((-8.361037365484107,2.8188972745734207)--(4.435402825585811,-2.155190941671777), linewidth(0.4) + zzttqq); draw((-4.7,-0.08)--(6.005906851468125,8.514998175352146), linewidth(0.4) + zzttqq); draw(circle((-5.693679121828034,2.4262990915244727), 2.6960959429021307), linewidth(0.4)); draw(circle((2.1404365590179797,3.633269077893458), 6.2268081360187635), linewidth(0.4)); draw(circle((-6.861648504969037,0.9512625005677113), 2.3950420881713206), linewidth(0.4) + blue); draw(circle((4.00184040986863,3.35929621672929), 5.531504767103866), linewidth(0.4) + blue); draw(circle((-0.7313546116041315,-3.7547591110897067), 5.408696769405049), linewidth(0.4) + blue); draw((xmin, 1.3026489037320543*xmin + 6.042449847540656)--(xmax, 1.3026489037320543*xmax + 6.042449847540656), linewidth(0.4) + ffvvqq); /* line */ draw((xmin, -0.6653300829646275*xmin + 0.7958159882567732)--(xmax, -0.6653300829646275*xmax + 0.7958159882567732), linewidth(0.4) + fuqqzz); /* line */ draw((xmin, -1.4552546273792886*xmin-1.3101236020647387)--(xmax, -1.4552546273792886*xmax-1.3101236020647387), linewidth(0.4) + ccqqqq); /* line */ draw((xmin, -6.490729487328796*xmin-21.55273253906176)--(xmax, -6.490729487328796*xmax-21.55273253906176), linewidth(0.4) + ccqqqq); /* line */ draw((xmin, -0.043776831499007345*xmin + 2.4528775506677185)--(xmax, -0.043776831499007345*xmax + 2.4528775506677185), linewidth(0.4) + zzttff); /* line */ draw((xmin, 0.68559441385822*xmin + 4.3973819878327705)--(xmax, 0.68559441385822*xmax + 4.3973819878327705), linewidth(0.4) + zzttff); /* line */ draw(circle((-5.541996951671136,2.0437199702430315), 2.9236772578141523), linewidth(0.4) + blue); draw(circle((-1.7370200157059534,2.432853499916966), 0.9389896348733316), linewidth(0.4) + blue); draw(circle((-4.012257400324183,0.8693900744712136), 2.1686573556328304), linewidth(0.4) + blue); /* dots and labels */ dot((-4.02,4.54),dotstyle); label("$A$", (-3.943526981844371,4.734072671706368), NE * labelscalefactor); dot((-4.7,-0.08),dotstyle); label("$B$", (-4.623872930791626,0.10772021885603664), NE * labelscalefactor); label("$\alpha = 60^\circ$", (-3.9629654375285783,4.131480545494771), NE * labelscalefactor,qqwuqq); dot((4.435402825585811,-2.155190941671777),dotstyle); label("$C$", (4.900970354469955,-2.186017551884884), NE * labelscalefactor); dot((-8.361037365484107,2.8188972745734207),dotstyle); label("$K$", (-8.2783025994226,3.004050115808555), NE * labelscalefactor); dot((6.005906851468125,8.514998175352146),dotstyle); label("$L$", (6.0867161512066,8.718956086976613), NE * labelscalefactor); dot((-1.9294666603982076,-9.029086391597342),dotstyle); label("$F$", (-4.468365285317969,-3.7605324623087366), NE * labelscalefactor); dot((-4.494534915431348,1.3159539569223115),linewidth(4pt) + dotstyle); label("$S$", (-4.410049918265346,1.468412116753193), NE * labelscalefactor); dot((-1.465161681439696,2.5170176867149068),linewidth(4pt) + dotstyle); label("$R$", (-1.3970892872132135,2.673596369176389), NE * labelscalefactor); dot((-3.4614142364996123,0.9143709136459671),linewidth(4pt) + dotstyle); label("$T$", (-3.379811767002359,1.060204547384046), NE * labelscalefactor); dot((-5.306828068628691,-0.8704839183530034),linewidth(4pt) + dotstyle); label("$D$", (-5.673549537738822,-1.1169024892514041), NE * labelscalefactor); dot((-1.2520147228878007,1.6288190477086486),linewidth(4pt) + dotstyle); label("$E$", (-1.1832662746869331,1.7794274077011145), NE * labelscalefactor); dot((-2.6660009556761235,2.569586625280545),linewidth(4pt) + dotstyle); label("$G$", (-2.5828350839498593,2.731911736229124), NE * labelscalefactor); dot((-5.204790045853898,2.680726767492772),linewidth(4pt) + dotstyle); label("$H$", (-5.129272778581017,2.8291040146503494), NE * labelscalefactor); dot((-1.5296541306844595,3.3486596607003585),linewidth(4pt) + dotstyle); label("$I$", (-1.4554046542658354,3.509449963598928), NE * labelscalefactor); dot((-1.94243001267791,1.5166066622451886),linewidth(4pt) + dotstyle); label("$J$", (-1.8636122236341888,1.6627966735956439), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy] Let $G$ denote the radical center, let $D,E$ denote the intersections of $(BTC)$ with $(BSK)$ and $(BRL)$. Let $J$ be the humpty point, $H = (KSD) \cap (ATJ)$, similarly define $I$. Claim 1: $B \in (KHSD),C \in (IREL)$ Claim 2:$K-H-G-R$, $S-G-I-L$ Claim 3: $DHGJ,GIEJ$ are cyclic By some angle chase and radical axes we are done.