Points $A'$ and $B'$ lie inside the parallelogram $ABCD$ and points $C'$ and $D'$ lie outside of it, so that all sides of 8-gon $AA'BB'CC'DD'$ are equal. Prove that $A'$, $B'$, $C'$, $D'$ are concyclic.
Source: IV Caucasus Mathematic Olympiad
Tags: geometry
Points $A'$ and $B'$ lie inside the parallelogram $ABCD$ and points $C'$ and $D'$ lie outside of it, so that all sides of 8-gon $AA'BB'CC'DD'$ are equal. Prove that $A'$, $B'$, $C'$, $D'$ are concyclic.