Given an acute scalene triangle $ABC$ inscribed in circle $(O)$. Let $H$ be its orthocenter and $M$ be the midpoint of $BC$. Let $D$ lie on the opposite rays of $HA$ so that $BC=2DM$. Let $D'$ be the reflection of $D$ through line $BC$ and $X$ be the intersection of $AO$ and $MD$. a) Show that $AM$ bisects $D'X$. b) Similarly, we define the points $E,F$ like $D$ and $Y,Z$ like $X$. Let $S$ be the intersection of tangent lines from $B,C$ with respect to $(O)$. Let $G$ be the projection of the midpoint of $AS$ to the line $AO$. Show that there exists a point with the same power to all the circles $(BEY),(CFZ),(SGO)$ and $(O)$.
Problem
Source: Vietnam TST 2019 Day 1 P3
Tags: geometry, geometric transformation, reflection
30.03.2019 23:39
01.04.2019 16:06
Here is my solution for this problem Solution a) Let $K$ $\equiv$ $AO$ $\cap$ ($O$) ($K$ $\ne$ $A$); $T$ $\equiv$ $AH$ $\cap$ $BC$, $N$ $\equiv$ $AM$ $\cap$ $D'X$ Since: $\overline{AD'}$ . $\overline{AD}$ = $\overline{AH}$ . $\overline{AT}$, we have: $\dfrac{\overline{AD'}}{\overline{AT}}$ = $\dfrac{\overline{AH}}{\overline{AD}}$ = $\dfrac{\overline{AD'} - \overline{AH}}{\overline{AT} - \overline{AD}}$ = $\dfrac{\overline{HD'}}{\overline{DT}}$ So: $\dfrac{\overline{HD'}}{\overline{DD'}}$ = $\dfrac{\overline{HD'}}{2 \overline{DT}}$ = $\dfrac{\overline{AH}}{2 \overline{AD}}$ = $\dfrac{\overline{OM}}{\overline{AD}}$ = $\dfrac{\overline{MX}}{\overline{DX}}$ or $D'X$ $\parallel$ $HK$ But: $M$ is midpoint of $HK$ then $N$ is midpoint of $D'X$ Hence: $AM$ passes through midpoint of $D'X$
Attachments:

01.04.2019 18:09
b) Let $L$ be symmedian point of $\triangle$ $ABC$; $U$ is reflection of $C$ through $O$; $Q$ be midpoint of $AB$; $W$ $\equiv$ $CL$ $\cap$ ($O$) ($W$ $\ne$ $C$); $I$ be intersection of tangents at $A$, $B$ of ($O$); $J$ $\equiv$ $BU$ $\cap$ $CA$; $V$ $\equiv$ $AU$ $\cap$ $AB$; $R$ be a point on the opposite ray of $UC$ which satisfies $R$ $\in$ ($I$; $IB$) We have: ($JB$; $JA$) $\equiv$ $\dfrac{\pi}{2}$ $-$ ($CA$; $CB$) $\equiv$ $\dfrac{\pi - (CA; CB)}{2}$ $\equiv$ $\dfrac{(IB; IA)}{2}$ (mod $\pi$) So: $J$ $\in$ ($I$; $IB$) Similarly: $V$ $\in$ ($I$; $IB$) But: $AJ$ $\perp$ $AU$, $BV$ $\perp$ $BU$ then: $I$, $J$, $V$ are collinear Since: $JV$ is anti - parallel line of $\triangle$ $ABC$, we have: $\triangle$ $ABC$ $\stackrel{-}{\sim}$ $\triangle$ $VJC$ Hence: $\triangle$ $BQF$ $\stackrel{-}{\sim}$ $\triangle$ $JIR$ So: ($QO$; $QZ$) $\equiv$ ($QI$; $QF$) $\equiv$ $\dfrac{\pi}{2}$ $-$ ($QF$; $QB$) $\equiv$ $\dfrac{\pi}{2}$ $-$ ($IJ$; $IR$) $\equiv$ ($RI$; $RU$) (mod $\pi$) or $I$, $Q$, $Z$, $R$ lie on a circle But: $U$ is orthocenter of $\triangle$ $VJC$ then: $\overline{CZ}$ . $\overline{CR}$ = $\overline{CW}$ . $\overline{CI}$ or $I$, $W$, $Z$, $R$ lie on a circle Hence: $I$, $W$, $Q$, $Z$, $R$ lie on a circle So: ($FC$; $FZ$) $\equiv$ ($QO$; $QZ$) $\equiv$ ($RI$; $RZ$) $\equiv$ ($WC$; $WZ$) (mod $\pi$) or $W$ $\in$ ($CFZ$) Then: $C$ - symmedian of $\triangle$ $ABC$ is radical axis of ($O$) and ($CFZ$) Similarly: $B$ - symmedian of $\triangle$ $ABC$ is radical axis of ($O$) and ($BEY$) Hence: $L$ is radical center of ($O$), ($BEY$) and ($CFZ$) or $P_{L / (O)}$ = $P_{L / (BEY)}$ = $P_{L / (CFZ)}$ Let $S'$ , $T'$ be midpoint of $AS$, $AT$; $G'$ $\equiv$ $AO$ $\cap$ ($BOCS$) ($G'$ $\ne$ $O$); $P$ $\equiv$ $GS'$ $\cap$ ($SGO$) ($P$ $\ne$ $G$) Since: ($AT$; $AM$) $\equiv$ ($AS$; $AG'$) $\equiv$ $-$ ($AG'$; $AS$) (mod $\pi$), we have: $\triangle ATM$ $\stackrel{-}{\sim}$ $\triangle$ $AG'S$ But: $T'$, $G$ are midpoint of $AT$, $AG'$, respectively so: $\triangle TMT'$ $\stackrel{-}{\sim}$ $\triangle$ $G'SG$ Then: ($T'T$; $T'M$) $\equiv$ $-$ ($GG'$; $GS$) $\equiv$ $-$ ($PS$; $PO$) (mod $\pi$) or $\triangle TMT'$ $\stackrel{-}{\sim}$ $\triangle$ $SOP$ Hence: $\dfrac{T'T}{TM}$ = $\dfrac{PS}{SO}$ or $\overline{T'T}$ . $\overline{OS}$ = $\overline{TM}$ . $\overline{PS}$ Since: $BC$, $OS$ are radical axises of (($O$); ($BOCS$)), (($BOCS$); ($SGO$)), we have: $M$ is radical center of ($O$), ($BOCS$) and ($SGO$) So: $M$ lies on radical axis of ($SGO$) and ($O$) It's well - known that: $L$, $T'$, $M$ are collinear Then: $\overrightarrow{T'M}$ . $\overrightarrow{OP}$ = ($\overrightarrow{T'T}$ + $\overrightarrow{TM}$) ($\overrightarrow{OS}$ + $\overrightarrow{SP}$) = $\overrightarrow{T'T}$ . $\overrightarrow{OS}$ + $\overrightarrow{T'T}$ . $\overrightarrow{SP}$ + $\overrightarrow{TM}$ . $\overrightarrow{OS}$ + $\overrightarrow{TM}$ . $\overrightarrow{SP}$ = $\overline{T'T}$ . $\overline{OS}$ $-$ $\overline{TM}$ . $\overline{PS}$ = 0 or $T'M$ $\perp$ $OP$ Hence: $T'M$ is radical axis of ($SGO$) and ($O$) or $P_{L / (SGO)}$ = $P_{L / (O)}$ Therefore: $P_{L / (O)}$ = $P_{L / (BEY)}$ = $P_{L / (CFZ)}$ = $P_{L / (SGO)}$ or symmedian point $L$ of $\triangle$ $ABC$ has equal power to the circles ($O$), ($BEY$), ($CFZ$), ($SGO$)
Attachments:

10.09.2019 18:43
16.05.2021 09:31
Weirdly bashable TST $\#3$. In its core, this Solution tries to $\textit{demystify}$ the absurd $X, G$ and $S$ the problem gave us as $\textsf{floating points}$, before determining their uses to establish $K$ as the radical center of all the circles. According to vanilla conventions in the above posts, let $K$ be the symmedian point of $\triangle ABC$.
$\color{red} \spadesuit$ $\color{red} \boxed{\textbf{Proof.}}$ $\color{red} \spadesuit$ We strengthen the Claim: let $X' = D'M \cap AO$. Then, we will prove that $I_A$ is the Miquel Point of the complete quad $DD'X'X$. Of course, this directly implies that $(ADI_AX)$ is a cyclic quad. To that end, we prove that $(DD'MI_A)$ and $(XX'MI_A)$ are cyclic, an arguably easier way to prove that $I_A$ also passes through $(ADX)$ and $(AD'X')$. $\color{red} \rule{25cm}{0.2pt}$ First, to proving $(DD'MI_A)$ concylic. Now, we go further by defining $H_A$ to be the reflection of $H$ to $BC$, and $Q_A$ to be the harmonic conjugate of $P_A$ with respect to $BC$. We Claim that $(Q_AD'MI_AD)$ are all cyclic. Projecting $(P_A,Q_A;B,C) = -1$ from $H_A$ to $(ABC)$ yields \[ (A; \overline{H_AQ_A} \cap (ABC);B,C) = -1\]which implies $Q_A,H_A$ and $I_A$ collinear. After that, noting that $Q_AD$ is a tangent of the circle $(BP_CD'P_BCD)$, we know that \[ Q_AH_A \cdot Q_AI_A = Q_AB \cdot Q_AC = Q_AD'^2 \]implying that $(Q_AD'I_AD)$ concyclic by inversion centered in $Q_A$ with radius $Q_AD'$. Finally, by standard projective techniques, since $M$ is the midpoint of $BC$ (also the center of the circle $(BD'C)$), we know that \[ \angle Q_AD'M = \angle Q_ADM = 90^{\circ} \]implying $(Q_AD'MD)$ cyclic. $\color{red} \rule{25cm}{0.2pt}$ Second, to proving $(XX'MI_A)$ concyclic. Here we cheese the fact by computing length ratios: we can reduce the needed \[ \angle DXI_A = \angle D'X'I_A \ \text{or} \ \triangle DXI_A \sim \triangle D'X'I_A \]into proving \[ \dfrac{DI_A}{D'I_A} = \dfrac{DX}{D'X'} \]If this holds true, then the two triangles are indeed similar by $SAS$ similarity. However, we know that \[ \dfrac{DX}{D'X'} = \dfrac{MX}{MD'} = \dfrac{MX}{MD} \]as $MD' = MD$. Also, since $Q_AI_A$ is an angle bisector of $\angle DI_AD'$, \[ \dfrac{DI_A}{D'I_A} = \dfrac{DH_A}{H_AD} = \dfrac{D'H}{HD} \]since $D,H_A$ are reflections of $D',H$ towards $BC$. We are done by observing that $HM \parallel D'X$ from $\color{green} \diamondsuit$ $ \boxed{\textbf{Short Preamble}}$ $\color{green} \diamondsuit$. $\blacksquare$ $\blacksquare$ $\color{red} \rule{4.6cm}{2pt}$ $\color{red} \clubsuit$ $\color{red} \boxed{\textbf{Linear Power Bash.}}$ $\color{red} \clubsuit$ $\color{red} \rule{4.6cm}{2pt}$ We know that $(ADX), (BEY), (CFZ)$ and $(O)$ have radical center $K$. Here, we prove that $K$ has the same power towards $(O)$ and $(S_AG_AO)$; with $S_A, G_A$ replacing $S,G$'s definitions. $\color{red} \rule{25cm}{0.2pt}$ $\color{red} \spadesuit$ $\color{red} \boxed{\textbf{Proof.}}$ $\color{red} \spadesuit$ First, note that $\text{Pow}_A(O) = 0$ and $\text{Pow}_{S_A}(S_AG_AO) = 0$. As we'd like to prove $\text{Pow}_{K}(O) - \text{Pow}_{K}(S_AG_AO) = 0$, it remains to prove \[ \dfrac{\text{Pow}_A(S_AG_AO)}{\text{Pow}_{S_A}(O)} = \dfrac{AK}{KS_A} \]by power linearity. Moreover, aside from $I_A$, we also draw $I_B$ for later usage. We compute the LHS first: \begin{align*} \text{LHS} &= \dfrac{R \cdot \frac{AS_A \cos{(\angle I_AAO)}}{2}}{R^2 \tan^2{A}} \\ &= \dfrac{R \cdot R \tan{A} \frac{\sin{C}}{2 \sin{x}} \cos{(I_AAO=90-C-x)}}{R^2\tan^2{A}} \\ &= \dfrac{\sin{C}}{\tan{A}} \cdot \dfrac{\sin{(C+x)}}{2\sin{x}} = \dfrac{\sin{C}}{\tan{A}} \cdot \dfrac{\sin{\angle(ACI_A)}}{2\sin{\angle(BCI_A)}} \end{align*}(letting $x = \angle BAI_A$) and the RHS next: \begin{align*} \text{RHS} &= \dfrac{AB \cdot \sin{(\angle ABK)}}{BS_A \cdot \sin{(\angle S_ABK)}} \\ &= \dfrac{2R\sin{C}}{R\tan{A}} \cdot \dfrac{\sin{(\angle ACI_B)}}{\sin{(\angle BAI_B)}} \end{align*}This might seem like a dead end, but we will prove that both of those equations are equal to $\dfrac{\sin{C}}{\tan{A}} \cdot \dfrac{b}{a}$. Redraw the midpoint $M_A,M_B$ of $BC$ and $AB$. The conclusion follows from the final observation that $\triangle AI_BB \sim \triangle M_BCB$ and $\triangle AI_AB \sim \triangle ACM_A$ (so the sine ratios are easily represented by side ratios.) We are done. $\blacksquare$ $\blacksquare$ $\blacksquare$