Problem

Source: FKMO 2019 #2

Tags: geometry, euclidean geometry, rectangle, perpendicular bisector



For a rectangle $ABCD$ which is not a square, there is $O$ such that $O$ is on the perpendicular bisector of $BD$ and $O$ is in the interior of $\triangle BCD$. Denote by $E$ and $F$ the second intersections of the circle centered at $O$ passing through $B, D$ and $AB, AD$. $BF$ and $DE$ meets at $G$, and $X, Y, Z$ are the foots of the perpendiculars from $G$ to $AB, BD, DA$. $L, M, N$ are the foots of the perpendiculars from $O$ to $CD, BD, BC$. $XY$ and $ML$ meets at $P$, $YZ$ and $MN$ meets at $Q$. Prove that $BP$ and $DQ$ are parallel.