The tangent line $l$ to the circumcircle of an acute triangle $ABC$ intersects the lines $AB, BC$, and $CA$ at points $C', A'$ and $B'$, respectively. Let $H$ be the orthocenter of a triangle $ABC$. On the straight lines A'H, B′H and C'H, respectively, points $A_1, B_1$ and $C_1$ (other than $H$) are marked such that $AH = AA_1, BH = BB_1$ and $CH = CC_1$. Prove that the circumcircles of triangles $ABC$ and $A_1B_1C_1$ are tangent.
Problem
Source: Kazakhstan National 2019, Problem 6
Tags: geometry, geometry proposed
22.03.2019 13:18
Let $H_A, H_B, H_C$ be the reflections of $H$ in sides $BC, CA, AB$, respectively. Observe that $\angle AA_1H=\angle A'HH_A=\angle A'H_AH$ proving that $A_1$ lies on $\odot(AA'H_A)$. Invert at $H$ mapping $A$ to $H_A$; clearly, $\overline{A'B'C'} \mapsto \odot(A_1B_1C_1)$, so the tangency follows.
27.09.2019 12:31
Nice problem Let $l$ be tangent to $\odot ABC$ at $P$. Let $HP$ meet $\odot ABC$ again in $Q$. Let $D = \odot ABC \cap AH$. Let $\omega$ be the circle passing through $H$ and $Q$ tangent to $\odot ABC$. We shall prove that $\odot A_{1}B_{1}C_{1}$ is $\omega$. Angle chasing yields that $AA'A_{1}D$ is cyclic. So $ A'H.HA_{1} = AH.HD = PH.HQ$. So $PA'QA_{1}$ is cyclic. So $\angle A'PQ = \angle A'A_{1}Q = \angle HA_{1}Q$. Let $RQ$ be tangent to $\odot ABC$ such that $R$ and $A'$ lie in the same half plane formed by $PQ$. Then $\angle HA_{1}Q = \angle A'PQ = \angle RQP = \angle RQH$. This means that $QR$ is tangent to $\odot A_{1}HQ$ also and so $\odot A_{1}HQ$ is tangent to $\odot ABC$ $\implies$ $A_{1}$ lies on $\omega$. Similarly $B_{1} , C_{1}$ also lie on $\omega$. So $\odot A_{1}B_{1}C_{1}$ is $\omega$ as desired . Hence proved. Q.E.D.
27.09.2019 18:36
Nice......
06.04.2021 22:38
Very nice problem! Let $\ell$ be tangent to $(ABC)$ at $P$ and let $\omega$ be the $9$-point circle of $ABC$. Furthermore, if $A_2$ is the midpoint of $HA'$, $B_2$ is the midpoint of $HB'$, $C_2$ is the midpoint of $HC'$ and $D= AH \cap BC$. Since the homothety centered at $H$ with ratio $\frac{1}{2}$ maps $(ABC)$ to $\omega$, we have that the line $A_2B_2C_2$ is tangent to $\omega$ at the midpoint $Q$ of $HP$. Now, observe that since $A_2$ is the midpoint of $HA'$ and $\angle HDA'= 90º$, then $A_2D=A_2H$. Moreover, $\angle HA_2D= 180º- 2 \angle A_2H= 180º- 2\angle AHA_1= \angle HAA_1$, because $AH=AA_1$. This implies that $AA_1DA_2$ is cyclic. $(\star)$ Similarly, $BB_1EB_2$ and $CC_1FC_2$ are cyclic, where $E= BH \cap AC, F= CH \cap AB$. Now, consider the inversion $\Phi$ centered at $H$ with radius $\sqrt{-HA.HD}$, hence $\Phi(\omega)= (ABC)$, and from $(\star)$, we have that $\Phi(A_1)=A_2, \Phi(B_1)=B_2, \Phi(C_1)=C_2$, and since line $A_2B_2C_2$ is tangent to $\omega$, we have that its image is tangent to the image of $\omega$, which is $(ABC)$. Hence, $(A_1B_1C_1)$ is tangent to $(ABC)$, as desired. $\blacksquare$
27.11.2022 13:05
Different and long solution. Let's first define new points. $D,E,F,K$ be feet of perpendiculars from $A,B,C,H$ to $BC,CA,AB,l$, respectively. $O$ be center of $(ABC)$ and $G$ be tangency point of $l$ to $(ABC)$. $T=GH\cap (ABC)$ and $O'=HK\cap (ADK)$. $H_J$ be $JH\cap (ABC)$ for$J\in\{A,B,C\}$. And let $\omega=(ABC)$. It is well known that $DH=DH_A$ and similarly others. Since $O'H\cdot O'K=AH\cdot HD=BH\cdot HE=CH\cdot HF$, $O'$ lies on $(BEK)$ and $(CFK)$ also. Claim 1: $H,A_1,B_1,C_1$ all lie on a circle with center $O'$. Proof: Let $AO'\cap HA'=X_A$. Since $\angle HDA'=\angle HKA'=90$, $(HDKA')$ is cyclic $\implies \angle X_AA'D=\angle HA'D=\angle HKD=\angle O'KD=\angle O'AD=\angle X_AAD \implies AX_ADA'$ is cyclic $\implies \angle AX_AA'=\angle ADA'=90 \implies O'A$ is perpendicular bisector of $A_1H \implies O'H=O'A_1$. Similarly, we get $O'B_1=O'H=O'C_1$ and the result follows $\square$. Claim 2: $T-O'-O$ are collinear. Proof: Since $O'H\perp l\perp OG$, we get $O'H\parallel OG$. So, it is enough to prove that $\frac{TG}{TH}=\frac{OG}{O'H}$. Let $\angle OGH=\angle GHK=\alpha, HG=a,OG=b$ and $\cos(\alpha)=c$. Then we get $Pow(H,\omega)=OG^2-OH^2=OG^2-(HG^2+OG^2-2HG\cdot OG\cdot \cos(\alpha))=2HG\cdot OG\cdot \cos(\alpha)-HG^2$. Then we have that $$\frac{TG}{TH}=1+\frac{HG}{TH}=1+\frac{HG^2}{Pow(H,\omega)}=\frac{2HG\cdot OG\cdot \cos(\alpha)}{Pow(H,\omega)}=\frac{2OG\cdot HG\cdot \cos(\alpha)}{HA\cdot HH_A}={2OG\cdot HK}{2HA\cdot HD}=\frac{OG\cdot HK}{HA\cdot HD}=\frac{OG\cdot HK}{HO'\cdot HK}=\frac{OG}{HO'}$$$\square$. Finishing: $\angle O'TH=\angle OTH=\angle OGH=\angle O'HT \implies O'T \implies T,H,A_1,B_1,C_1$ lie on a circle with center $O'$. Since $T-O'-O$ are collinear, we get that this circle tangents $\omega$ $\blacksquare$. [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(12cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -14.687702317236567, xmax = 11.73574997760541, ymin = -7.184546947683245, ymax = 6.749695473424899; /* image dimensions */ /* draw figures */ draw((xmin, 2.771082095468158*xmin + 18.430104519733288)--(xmax, 2.771082095468158*xmax + 18.430104519733288), linewidth(0.7)); /* line */ draw((xmin, 0.010989010989010999*xmin-1.2217582417582418)--(xmax, 0.010989010989010999*xmax-1.2217582417582418), linewidth(0.7)); /* line */ draw((xmin, -1.1016755642394551*xmin-1.0437319097216873)--(xmax, -1.1016755642394551*xmax-1.0437319097216873), linewidth(0.7)); /* line */ draw(circle((-3.501202808039724,0.66945553161484), 4.120005850426413), linewidth(0.7)); draw((xmin, -91*xmin-453.0899013765317)--(xmax, -91*xmax-453.0899013765317), linewidth(0.7)); /* line */ draw((xmin, 0.9077082513764866*xmin + 5.162882749800584)--(xmax, 0.9077082513764866*xmax + 5.162882749800584), linewidth(0.7)); /* line */ draw((xmin, -0.36086985717074394*xmin-1.162260822852681)--(xmax, -0.36086985717074394*xmax-1.162260822852681), linewidth(0.7)); /* line */ draw((xmin, 0.19827822678990023*xmin-2.836544797234249)--(xmax, 0.19827822678990023*xmax-2.836544797234249), linewidth(0.7)); /* line */ draw((xmin, -0.12963444158699694*xmin-0.009318648622429756)--(xmax, -0.12963444158699694*xmax-0.009318648622429756), linewidth(0.7)); /* line */ draw(circle((-5.31413537240283,2.2919117240738904), 1.6870881413008119), linewidth(0.7)); draw((xmin, -1.753592645481804*xmin-8.106391053084744)--(xmax, -1.753592645481804*xmax-8.106391053084744), linewidth(0.7)); /* line */ draw((xmin, -5.043418110953861*xmin-24.50949485716312)--(xmax, -5.043418110953861*xmax-24.50949485716312), linewidth(0.7)); /* line */ draw((-7.12,-1.3)--(-2.6998949216948684,-3.371875174826964), linewidth(0.7)); draw((xmin, 1.1174000091893777*xmin + 10.759761733057212)--(xmax, 1.1174000091893777*xmax + 10.759761733057212), linewidth(0.7)); /* line */ draw((xmin, -3.378894209323679*xmin-12.494534491524162)--(xmax, -3.378894209323679*xmax-12.494534491524162), linewidth(0.7)); /* line */ draw((xmin, 0.19827822678989623*xmin + 1.6256573081603283)--(xmax, 0.19827822678989623*xmax + 1.6256573081603283), linewidth(0.7)); /* line */ draw((xmin, -0.6888701790545952*xmin-1.1097807713512648)--(xmax, -0.6888701790545952*xmax-1.1097807713512648), linewidth(0.7)); /* line */ draw(circle((7.52954696420037,1.7474673532935103), 12.85521667014787), linewidth(0.7)); draw(circle((-4.114264009352849,-0.5612468396194226), 3.095190636688458), linewidth(0.7)); draw((xmin, 7.713999364350537*xmin + 43.285148608862016)--(xmax, 7.713999364350537*xmax + 43.285148608862016), linewidth(0.7)); /* line */ draw(circle((1.8179385958621643,-0.24498610333647333), 6.86088123121867), linewidth(0.7)); /* dots and labels */ dot((-5.028415961076484,4.495951081427931),dotstyle); label("$A$", (-4.968138159303158,4.668160494469238), NE * labelscalefactor); dot((-7.12,-1.3),dotstyle); label("$B$", (-7.049673138258808,-1.1291724634485945), NE * labelscalefactor); dot((0.16,-1.22),dotstyle); label("$C$", (0.22709790387540799,-1.0431586213429886), NE * labelscalefactor); dot((-4.964984427102683,-1.276318510187942),linewidth(4pt) + dotstyle); label("$D$", (-4.8993270856186735,-1.1463752318697156), NE * labelscalefactor); dot((-3.0888148950377308,2.359139982600239),linewidth(4pt) + dotstyle); label("$E$", (-3.024225327716476,2.5006116734079717), NE * labelscalefactor); dot((-6.255640456450152,1.0952112551780127),linewidth(4pt) + dotstyle); label("$F$", (-6.989534717202754,1.2276068102450053), NE * labelscalefactor); dot((-4.9860103449970365,0.6370400181982511),linewidth(4pt) + dotstyle); label("$H$", (-4.916529854039795,0.780334831295855), NE * labelscalefactor); dot((-3.501202808039724,0.66945553161484),linewidth(4pt) + dotstyle); label("$O$", (-3.437091769823382,0.8147403681380972), NE * labelscalefactor); dot((-2.6998949216948684,-3.371875174826964),dotstyle); label("$G$", (-2.6285616540306913,-3.1935046739831345), NE * labelscalefactor); dot((-8.265942684505129,-4.475501255464874),linewidth(4pt) + dotstyle); label("$C'$", (-8.20225862247392,-4.346090158198252), NE * labelscalefactor); dot((1.3791358584315068,-2.563092184722083),linewidth(4pt) + dotstyle); label("$B'$", (1.4484944617750046,-2.419380095032682), NE * labelscalefactor); dot((8.621887536721374,-1.1270122248711938),linewidth(4pt) + dotstyle); label("$A'$", (8.690859967066979,-0.9915503160796252), NE * labelscalefactor); dot((-6.05337989902767,0.7754078743019742),linewidth(4pt) + dotstyle); label("$A_1$", (-6.661562401413965,0.0050905365579164), NE * labelscalefactor); dot((-6.571299566178369,3.4169915374234123),linewidth(4pt) + dotstyle); label("$T$", (-6.999184548782934,3.5499805470963626), NE * labelscalefactor); dot((-5.31413537240283,2.2919117240738904),linewidth(4pt) + dotstyle); label("$O'$", (-5.243382454041095,2.431800599723487), NE * labelscalefactor); dot((-4.134720644511388,-3.6563698748995606),linewidth(4pt) + dotstyle); label("$K$", (-4.073594201404862,-3.5203572739844367), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy]
29.01.2023 00:34
an older source here by LeVietAn