Let $a,b,c$ be positive real numbers. Prove that: $\left (a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right ) \geq 9+3\sqrt[3]{\frac{(a-b)^2(b-c)^2(c-a)^2}{a^2b^2c^2}}$
Problem
Source: https://pregatirematematicaolimpiadejuniori.wordpress.com/arabia-saudita/
Tags: 3-variable inequality, inequalities, three variable inequality, algebraic inequality, Inequality, inequalities proposed
13.03.2019 21:09
After expanding we have $$\frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{b}+\frac{c}{a}\geq 6+3\sqrt[3]{\left(1-\frac{b}{a}\right)^2 \left(1-\frac{c}{b} \right )^2 \left(1-\frac{a}{c} \right)^2}$$Let $\frac{b}{a}=x, \frac{c}{b}=y$ and $\frac{a}{c}=z$ , we have $xyz=1$ and we need to prove $$\sum \frac{(1-x)^2}{x} \geq 3\sqrt[3]{(1-x)^2(1-y)^2(1-z)^2}$$wich is just AM-GM.
13.03.2019 21:09
It's equivalent to $\frac{(a-b)^{2}}{ab}+\frac{(b-c)^{2}}{bc}+\frac{(c-a)^{2}}{ca} \geqslant 3\sqrt[3]{\frac{(a-b)^2(b-c)^2(c-a)^2}{a^2b^2c^2}}$ which is AM-GM.
13.03.2019 23:26
Steve12345 wrote: Let $a,b,c$ be positive real numbers. Prove that: $\left (a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right ) \geq 9+3\sqrt[3]{\frac{(a-b)^2(b-c)^2(c-a)^2}{a^2b^2c^2}}$ The following inequality is also true. Let $a$, $b$ and $c$ be positive numbers. Prove that: $$\left (a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right ) \geq 9+3\sqrt[3]{\frac{2(a-b)^2(b-c)^2(c-a)^2}{a^2b^2c^2}}$$
14.03.2019 04:21
Steve12345 wrote: Let $a,b,c$ be positive real numbers. Prove that: $\left (a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right ) \geq 9+3\sqrt[3]{\frac{(a-b)^2(b-c)^2(c-a)^2}{a^2b^2c^2}}$ Saudi Arabia JTST -2015
21.07.2020 18:41
2015 Saudi Arabia JBMO TST 3.4: Let $a,b$ and $c$ be positive numbers with $a^2+b^2+c^2=3$. Prove that $$a+b+c\ge 3\sqrt[5]{abc}$$2015 Saudi Arabia JBMO TST 1.2: Let $a,b,c$ be positive real numbers. Prove that $$\frac{a}{\sqrt{(2a+b)(2a+c)}} +\frac{b}{\sqrt{(2b+c)(2b+a)}} +\frac{c}{\sqrt{(2c+a)(2c+b)}} \le 1 $$2015 Saudi Arabia JBMO TST
21.07.2020 22:18
sqing wrote: 2015 Saudi Arabia JBMO TST 1.2: Let $a,b,c$ be positive real numbers. Prove that $$\frac{a}{\sqrt{(2a+b)(2a+c)}} +\frac{b}{\sqrt{(2b+c)(2b+a)}} +\frac{c}{\sqrt{(2c+a)(2c+b)}} \le 1 $$2015 Saudi Arabia JBMO TST By AM-GM, we have, $$\sum_{cyc}\left(\frac{a}{\sqrt{(2a+b)(2a+c)}}\right)=\sum_{cyc}\left(a\cdot\sqrt{\frac{1}{(2a+b)}\cdot\frac{1}{(2a+c)}}\right)\leqslant \sum_{cyc}\frac{a}{2}\cdot\left(\frac{1}{2a+b}+\frac{1}{2a+c}\right).$$So, it suffice to prove that, $$\sum_{cyc}\frac{a}{2}\cdot\left(\frac{1}{2a+b}+\frac{1}{2a+c}\right)\leqslant 1$$or $$\sum_{cyc}\left(\frac{a}{2a+b}+\frac{a}{2a+c}\right)\leqslant 2$$or$$\sum_{cyc}\left(2+\frac{2a}{2a+b}-1+\frac{2a}{2a+c}-1\right)\leqslant 4$$or$$\sum_{cyc}\left(2-\frac{b}{2a+b}-\frac{c}{2a+c}\right)\leqslant 4$$or $$\sum_{cyc}\frac{b}{2a+b}+\sum_{cyc}\frac{c}{2a+c}\geqslant 2$$or$$\sum_{cyc}\frac{b^2}{2ab+b^2}+\sum_{cyc}\frac{c^2}{2ac+c^2}\geqslant 2.$$By Angle form of Cauchy-Schwarz's inequality or Titu's Lemma, we have, $$\sum_{cyc}\frac{b^2}{2ab+b^2}+\sum_{cyc}\frac{c^2}{2ac+c^2}\geqslant \frac{(a+b+c)^2}{b^2+2ab+c^2+2bc+a^2+2ac}+\frac{(a+b+c)^2}{a^2+2ab+b^2+2bc+c^2+2ca}=2\frac{(a+b+c)^2}{(a+b+c)^2}=2$$which was desired. $\blacksquare$ Thank You, Best Regards Aditya Raj
21.07.2020 22:37
..........
21.07.2020 23:02
Kgxtixigct wrote: $$f(a,b,c)\geqslant f(\sqrt{ab},\sqrt{ab},c)\geqslant 0$$ The condition mentioned in the problem is $a^2+b^2+c^2=3$ . However the mixing variable approach you use doesnt preserve this condition and instead preserves $abc= \text { constant}$ . So in my opinion the SMV approach doesn't work @below which part of the comment can you not understand? SMV approaches work only when some particular condition about the variables is kept fixed and the variables are brought closer to each other . But you aren't preserving the condition $a^2+b^2+c^2=3$ with the substitution $(a,b,c) \mapsto (\sqrt{ab},\sqrt{ab},c)$
21.07.2020 23:09
Aryan-23 wrote: Kgxtixigct wrote: $$f(a,b,c)\geqslant f(\sqrt{ab},\sqrt{ab},c)\geqslant 0$$ The condition mentioned in the problem is $a^2+b^2+c^2=3$ . However the mixing variable approach you use doesnt preserve this condition and instead preserves $abc= \text { constant}$ . So in my opinion the SMV approach doesn't work Could you please explain me in detail that where did i go wrong ? Thank you
22.07.2020 04:27
Solution of NaPrai: By Cauchy-Schwarz's inequality, we have \begin{align*}\sum \frac{a}{\sqrt{(2a+b)(2a+c)}} &= \sum \frac{a}{\sqrt{(a+b+a)(a+a+c)}} \\&\le \sum \frac{a}{a+\sqrt{ab}+\sqrt{ac}} \\&= \sum \frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}} \\&= 1\end{align*}
22.07.2020 05:39
Aryan-23 wrote: Kgxtixigct wrote: $$f(a,b,c)\geqslant f(\sqrt{ab},\sqrt{ab},c)\geqslant 0$$ The condition mentioned in the problem is $a^2+b^2+c^2=3$ . However the mixing variable approach you use doesnt preserve this condition and instead preserves $abc= \text { constant}$ . So in my opinion the SMV approach doesn't work @below which part of the comment can you not understand? SMV approaches work only when some particular condition about the variables is kept fixed and the variables are brought closer to each other . But you aren't preserving the condition $a^2+b^2+c^2=3$ with the substitution $(a,b,c) \mapsto (\sqrt{ab},\sqrt{ab},c)$ Thank you.....probably $f\left(\sqrt{\frac{a^2+b^2}{2}},\sqrt{\frac{a^2+b^2}{2}},c\right)$ would work.