In the following $6\times 6$ matrix, one can choose any $k\times k$ submatrix, with $1<k\leq6 $ and add $1$ to all its entries. Is it possible to perform the operation a finite number of times so that all the entries in the $6\times 6$ matrix are multiples of $3$? $ \begin{pmatrix} 2 & 0 & 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 1 & 2 & 0 \\ 1 & 0 & 2 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 & 2 & 0 \\ 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} $ Note: A $p\times q$ submatrix of a $m\times n$ matrix (with $p\leq m$, $q\leq n$) is a $p\times q$ matrix formed by taking a block of the entries of this size from the original matrix.
Problem
Source: Singapore Mathematical Olympiad 2014 Senior Section Round 2
Tags: linear algebra, matrix, combinatorics