Let $ABC$ be an acute-angled triangle with circumradius $R$ less than the sides of $ABC$, let $H$ and $O$ be the orthocenter and circuncenter of $ABC$, respectively. The angle bisectors of $\angle ABH$ and $\angle ACH$ intersects in the point $A_1$, analogously define $B_1$ and $C_1$. If $E$ is the midpoint of $HO$, prove that $EA_1+EB_1+EC_1=p-\frac{3R}{2}$ where $p$ is the semiperimeter of $ABC$