Problem
Source: IMO ShortList 2001, geometry problem 8
Tags: geometry, ratio, trigonometry, similar triangles, angle bisector, IMO, IMO 2001
30.09.2004 20:47
Please post your solutions. This is just a solution template to write up your solutions in a nice way and formatted in LaTeX. But maybe your solution is so well written that this is not required finally. For more information and instructions regarding the ISL/ILL problems please look here: introduction for the IMO ShortList/LongList project and regardingsolutions
03.10.2005 14:54
Weird solution: We will have $\angle ABQ = \angle QBC = x$ Let R lie on AC s.t. RAB is equilateral. Let T lie on AB extended past B such that BT = BP, and let U lie on AC such that UAT is equilateral. Since AU = AT = AB + BP = AQ + QB, we have QB = QU. As a result, we calculate $\angle QBU = 90 - \dfrac{60 + \angle ABQ}{2} = 60 - \dfrac{x}{2}$. Meanwhile, $\angle QBR = 60 - x$, so we have $\angle RBU = \angle QBU - \angle QBR = \dfrac{x}{2}$. Then suppose the bisector of $\angle BTP$ intersects BR at X. Then since $\angle BRT = \angle RBU = \dfrac{x}{2} = \angle BTX$, we have similar triangles, and by equal ratios $BT^2 = BX \cdot BR$. Equivalently, $BP^2 = BX \cdot BR$, so triangles BXP and BPR are similar; in particular, BX = XP. Since TX is the bisector of $\angle BTP$, we have then that T, B, X, and P are concyclic. Then $\dfrac{x}{2} = \angle XTP = \angle XBP = \angle ABC - \angle ABR = 2x - 60$. Solving for x, x = 40. Then $\angle ABC = 80 \implies \angle ACB = 40$.
11.04.2008 20:12
11.04.2008 22:25
Let $ ABC$ be a triangle with $ A = 60^{\circ}$ . Let $ AP$ bisect $ \widehat { BAC}$ and let $ BQ$ bisect $ \widehat {ABC}$ , where $ P\in BC$ and $ Q\in AC$ . If $ AB + BP = AQ + QB$ , then what are the angles of the triangle ? Proof I (metric). Denote $ l_b = BQ$ . Thus, $ l_b = \frac {2ac}{a + c}\cdot\cos\frac B2$ . Therefore, $ AB + BP = AQ + QB$ $ \Longleftrightarrow$ $ c + \frac {ac}{b + c} = \frac {bc}{a + c} + l_b$ $ \Longleftrightarrow$ $ c(c + a)(c + b) + ac(a + c) = bc(b + c) + 2ac(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + (a + c)^2 - b^2 = 2a(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + 4p(p - b) = 2a(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + 4ac\cdot\cos^2\frac B2 = 2a(b + c)\cdot \cos\frac B2$ $ \Longleftrightarrow$ $ b\left(1 - 2\cdot\cos\frac B2\right) = 2c\cdot\cos\frac B2\cdot\left(1 - 2\cdot\cos\frac B2\right)$ $ \Longleftrightarrow$ $ b = 2c\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ \sin B = 2\cdot\sin C\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ 2\sin\frac B2\cos\frac B2 = 2\sin C\cos\frac B2$ $ \Longleftrightarrow$ $ \sin\frac B2 = \sin C$ $ \Longleftrightarrow$ $ B = 2C$ $ \Longleftrightarrow$ $ C = 40^{\circ}$ , $ B = 80^{\circ}$ because $ A = 60^{\circ}$ . Proof II (trigonometric) Denote ${ x=m(\widehat ABQ})$ . I"ll apply the Sinus' theorem in the triangles $ ABP$ , $ ABQ$ : $ AB+BP=AQ+QB$ $ \Longleftrightarrow$ $ 1+\frac {BP}{BA}=\frac {AQ+QB}{AB}$ $ \Longleftrightarrow$ $ 1+\frac {\sin 30}{\sin (30+2x)}=\frac {\sin x+\sin 60}{\sin (60+x)}$ $ \Longleftrightarrow$ $ \sin (60+x)\left[\sin (30+2x)+\frac 12\right]=\sin (30+2x)(\sin x+\sin 60)$ $ \Longleftrightarrow$ $ \cos (x-30)-\cos (90+3x)+\cos (30-x)=$ $ \cos (x+30)-\cos (30+3x)+\cos (2x-30)-\cos (90+2x)$ $ \Longleftrightarrow$ $ \underline {\cos (x-30)}+\underline {\underline {\sin 3x}}+\underline {\underline {\underline {\cos (x-30)}}}=$ $ \underline {\underline {\underline {\cos (x+30)}}}-\underline {\underline {\cos (30+3x)}}+\cos (2x-30)+\underline {\sin 2x}$ $ \Longleftrightarrow$ $ [\cos (x-30)-\cos (90-2x)]+[\sin 3x+\sin (60-3x)]=$ $ [\cos (x+30)-\cos (x-30)]+\cos (2x-30)$ $ \Longleftrightarrow$ $ 2\sin \left(30-\frac x2\right)\sin\left(60-\frac {3x}{2}\right)+2\sin 30\cos (3x-30)=\cos (2x-30)-2\sin 30\sin x$ $ \Longleftrightarrow$ $ \cos (3x-30)+2\sin\left(30-\frac x2\right)\sin \left(60-\frac {3x}{2}\right)=\cos (2x-30)-\cos (90-x)$ $ \Longleftrightarrow$ $ \cos (3x-30)+2\sin\left(30-\frac x2\right)\sin \left(60-\frac {3x}{2}\right)=2\sin \left(30+\frac x2\right)\sin\left(60-\frac {3x}{2}\right)$ $ \Longleftrightarrow$ $ \sin (120-3x)=2\sin\left(60-\frac {3x}{2}\right)\left[\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)\right]$ $ \Longleftrightarrow$ $ 2\sin\left(60-\frac {3x}{2}\right)\cos\left(60-\frac {3x}{2}\right)=2\sin\left(60-\frac {3x}{2}\right)\left[\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)\right]$ $ \Longleftrightarrow$ $ \sin\left(60-\frac {3x}{2}\right)=0\ \ \vee\ \ \cos\left(60-\frac {3x}{2}\right)=\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)$ . Thus, $ \boxed {\ x=40\ }$ or $ \sin\left(30+\frac {3x}{2}\right)+\sin\left(30-\frac x2\right)=\sin\left(30+\frac x2\right)$ $ \Longleftrightarrow$ $ 2\sin\left(30+\frac x2\right)\cos x=\sin\left(30+\frac x2\right)$ $ \Longleftrightarrow$ $ x\in\emptyset$ .
09.07.2009 21:02
Interesting problem
30.07.2010 02:24
vishalarul wrote: Now $ \angle BPC' = \angle BPB' + \angle B'PC' = \alpha + 60^{\circ} + 2\alpha = 60^{\circ} + 3\alpha$ The problem here is that $C'$ could be in between $Q$ and $C$, in which case we would have $360^\circ-\angle{BPC'}=\angle{BPB'}+\angle{B'PC'}$ instead. Of course, this can be fixed by directed angles (counterclockwise being positive). Basic angle chasing using the facts that $\triangle{AB'C'}$ is equilateral, $BP=BB'$, $QB=QC'$, and $PB'=PC'$ tells us that $\angle{PBC'}=\angle{BC'P}=60^\circ-(3\angle{ABQ}/2)$, so $PB=PC'$. But $PB'=PC'$, so $PB'=PC'=PB=BB'$. This implies that $\triangle{PBB'}$ is equilateral, so $\angle{ABQ}=\angle{BB'P}=60^\circ$. But this forces the sum of the angles in $\triangle{ABC}$ to be more than $180^\circ$, which is impossible. So we must have $\angle{APQ}=40^\circ$. Edit: I also have a trigonometric solution that is somewhat shorter than Virgil Nicula's. Letting $2x=\angle{ABQ}$, we find by the Law of Sines that (for convenience, take all angles to be in degrees) \[AB+\frac{AB\sin30}{\sin(150-4x)}=AB+BP=AQ+QB=\frac{AB\sin2x}{\sin(120-2x)}+\frac{AB\sin60}{\sin(120-2x)}.\]Dividing by $AB$ and simplifying, this is equivalent to \[1+\frac{1}{2\sin(4x+30)}=\frac{\sin2x+\sin60}{\sin(2x+60)}=\frac{2\sin(x+30)\cos(x-30)}{2\sin(x+30)\cos(x+30)}=\frac{\cos(x-30)}{\cos(x+30)}.\]Clearing denominators, this is equivalent to \[2\sin(4x+30)\cos(x+30)+\cos(x+30)=2\sin(4x+30)\cos(x-30),\]or \begin{align*} \cos(x+30) &= 2\sin(4x+30)[\cos(x-30)-\cos(x+30)]\\ &= 2\sin(4x+30)(2\sin{x}\sin30)\\ &= 2\sin(4x+30)\sin{x}\\ &= \cos(3x+30)-\cos(5x+30). \end{align*}Thus \[\cos(3x+30)=\cos(5x+30)+\cos(x+30)=2\cos(3x+30)\cos(2x).\]Note that $0<x<\angle{ABC}/4<45$. If $\cos(2x)=1/2$, then we must have $\angle{APQ}=2x=60$, making the sum of angles in $\triangle{ABC}$ greater than $180^\circ$. Thus $\cos(3x+30)=1\implies x=20$, so $\angle{ABC}=80$ and $\angle{ACB}=40$.
22.04.2014 21:04
Interestingly,both the geometry problems of IMO 2001 can be done by just a trigimetrical bash(though tiring and requires intelligence).Credit goes to those who will give a pure geometric approach.
03.12.2014 14:49
sayantanchakraborty wrote: Interestingly,both the geometry problems of IMO 2001 can be done by just a trigimetrical bash(though tiring and requires intelligence).Credit goes to those who will give a pure geometric approach. Actually I found it easier by pure geometry Solved it in less than half an hour The correct diagram is the key The trigonometric solutions would have taken me ages
16.05.2016 19:54
10.11.2018 18:15
It seems to me that it can be solved by construction.
01.05.2019 04:41
similar to #4
29.08.2019 16:40
Wow did I just do a G8 by a pure trig bash? Honestly, after applying the sine rule on both triangles and getting $\frac{\cos({m}+30)}{\cos({m}-30)}=\frac{\sin({30+4 m}) +\sin{30}}{\sin({30+4m})}$, it's almost mindless bashing... here is basically a sketch of my solution- First, letting $\angle{ABC}= \alpha$ and $m= \frac{\alpha}{4}$, just mark all angles and apply sine rule on triangles $APB$ and $AQB$ to get the aforementioned formula $\frac{\cos({m}+30)}{\cos({m}-30)}=\frac{\sin({30+4 m}) +\sin{30}}{\sin({30+4m})}$. Cross- multiply and simplify a bit to get a rather important step- $2 (\sin({60+3m})+ \sin{m}) \cos({2m}) = \sin{5m}+\sin({60+3m})$- this step is important because, if you weren't able to get a hint of what the angles may be through your diagram, the $60+3m$ is very telling of what the solutions could be... Juggling now with the algebra a bit, the next important step we get to is $\sin({60+3m}) \cdot (2 \cos({2m})-1) = \sin({5m})+\sin({m})-\sin({3m})=2 \sin({3m}) \cos({2m})-\sin({3m})=\sin({3m}) \cdot (2 \cos({2m})-1)$ Aha! Noticing that as $m< 30=>cos({2m}) \neq \frac{1}{2}$, we get $\sin({3m})=\sin({60+3m})=>6m=120=>m=20 => \alpha=80$ ! Hence our angles are $60,80,40$, and we're done.
04.05.2020 03:02
Made with Blood, Sweat, and Tears Let $\angle ABQ = \angle BQC = x$. If $BP = \sin 30$, then by the Law of Sines, we know that $$\frac{BP}{\sin (30)} = \frac{AB}{\sin(150-2x)} \Longleftrightarrow AB = \sin (150 -2x)$$Furthermore, by the same reasoning as before, $$\frac{AB}{\sin (120-x)} = \frac{BQ}{\sin (60)} \Longleftrightarrow BQ = \frac{\sin (150 -2x) \sin (60)}{\sin (120-x)}$$$$\frac{AB}{\sin (120-x)} = \frac{AQ}{\sin (x)} \Longleftrightarrow AB= \frac{\sin (150 -2x) \sin (x)}{\sin (120-x)}$$It follows that since we want $BP + AB = AQ + QB$, we need: $$\frac{\sin (150-2x)(\sin(x) + \sin (60))}{\sin (120-x)} = \sin (30) + \sin(150 -2x)$$We know that $\sin (x) + \sin (60) = 2\sin \left(\frac{x + 60}{2} \right)\cos \left(\frac{x - 60}{2} \right)$ and $$\sin (120-x) = \sin (60 + x) = 2\sin \left(\frac{60 + x}{2} \right) \cos \left( \frac{60 + x}{2} \right)$$Therefore, we can reduce the problem to: $$\frac{\sin (150-2x)\left( 2\sin \left(\frac{x + 60}{2} \right)\cos \left(\frac{x - 60}{2} \right)\right)}{2\sin \left(\frac{60 + x}{2} \right) \cos \left( \frac{60 + x}{2} \right)} = \sin (30) + \sin(150 -2x) \Longleftrightarrow$$$$\frac{\sin (150 - 2x) \cos \left( \frac{x-60}{2} \right)}{\cos \left( \frac{x+60}{2} \right)} = \sin (30) + \sin(150 -2x) \Longleftrightarrow$$$$\frac{\cos \left( \frac{x-60}{2} \right)}{\cos \left( \frac{x+60}{2} \right)} = \frac{\sin (30)}{\sin(150-2x)} + 1$$This motivates us to consider: $$\frac{\cos \left( \frac{x-60}{2} \right)}{\cos \left( \frac{x+60}{2} \right)} - 1 = \frac{\cos \left( \frac{x-60}{2}\right) - \cos \left(\frac{x+60}{2} \right)}{\cos \left(\frac{x+60}{2} \right)} = \frac{-2 \sin \left(\frac{x}{2} \right) \sin (-30)}{\cos \left(\frac{x+60}{2} \right)}$$Putting this into our equation, we see that: $$\frac{-2 \sin \left(\frac{x}{2} \right) \sin (-30)}{\cos \left(\frac{x+60}{2} \right)} = \frac{\sin (30)}{\sin(150-2x)} \Longleftrightarrow$$$$\frac{2 \sin \left(\frac{x}{2} \right)}{\cos \left(\frac{x+60}{2} \right)} = \frac{1}{\sin (150-2x)} \Longleftrightarrow$$$$2\sin \left(\frac{x}{2} \right) \sin (150 -2x) = \cos \left(\frac{x}{2} + 30 \right)$$Multiplying both sides by $2\cos \left(\frac{x}{2} \right)$, we get: $$2\sin (x) \sin (150 -2x) = 2\cos \left(\frac{x}{2} + 30 \right) \cos \left(\frac{x}{2} \right) \Longleftrightarrow $$$$- \cos \left(150 - x \right) - \cos (150 -3x) = \cos(x+30) + \cos(30) \Longleftrightarrow$$$$\cos(150 - 3x) = \cos (30) \Longleftrightarrow x = 40$$This means that the only such triangle has angles $60,40,80$.
12.06.2020 05:04
Let $\angle ABQ=x$, so $\angle ABC = 2x$. By the angle bisector theorem and the Law of Sines, \[AB+\frac{AB}{AB+AC}\cdot BC = AB+BP=AQ+BQ = AB \cdot \frac{\sin \angle ABQ+\sin \angle BAQ}{\sin \angle AQB}.\]Divide through by $AB$ and apply the Law of Sines again to get \[\frac{\sin 30^\circ+\sin (2x+30^\circ)}{\sin (2x+30^\circ)} = 1+\frac{\sin 60^\circ}{2\sin (2x+30^\circ)\cos (30^\circ)} = \]\[1+\frac{\sin 60^\circ}{\sin (2x+60^\circ)+\sin 2x} = \frac{\sin (60^\circ+2x)+\sin 2x+\sin 60^\circ}{\sin (60^\circ+2x)+\sin 2x}=\frac{\sin \angle ACB+\sin \angle ABC+\sin \angle BAC}{\sin \angle ACB+\sin \angle ABC}=\]\[\frac{AB+AC+BC}{AB+AC}=\frac{\sin \angle ABQ+\sin \angle BAQ}{\sin \angle AQB} = \frac{\sin x+\sin 60^\circ}{\sin (60^\circ+x)} = \frac{2\sin (x/2+30^\circ)\cos (x/2-30^\circ)}{2\sin (x/2+30^\circ)\cos (x/2+30^\circ)}=\]\[\frac{\cos (x/2-30^\circ)}{\cos (x/2+30^\circ)}.\]Cross-multiply to obtain \[\sin (30^\circ)\cos (x/2+30^\circ)+\sin (2x+30^\circ)\cos (x/2+30^\circ) = \sin (2x+30^\circ)\cos (x/2-30^\circ).\]Rewrite this as \[\sin (30^\circ)\cos (x/2+30^\circ)=\sin (2x+30^\circ)(\cos (x/2-30^\circ) + \cos (150^\circ - x/2)) = \]\[2\sin (2x+30^\circ)\cos (60^\circ)\cos (x/2-90^\circ) = 2\sin (2x+30^\circ)\cos (60^\circ)\sin (x/2).\]Divide through by $\sin (30^\circ)=\cos (60^\circ)$ to get \[\cos (x/2+30^\circ) = 2\sin (2x+30^\circ)\sin (x/2) = \cos (3x/2+30^\circ) - \cos (5x/2+30^\circ).\]Rearrange as \[\cos (3x/2+30^\circ) = \cos (x/2+30^\circ)+\cos (5x/2+30^\circ) = 2\cos (3x/2+30^\circ)\cos (x).\]This implies that either $\cos x = 1/2$ or $\cos (3x/2+30^\circ) = 0$. The first implies $x=60^\circ \implies \angle ABC = 120^\circ \implies \angle ACB = 0^\circ$, absurd. Thus, we have that $3x/2+30^\circ \equiv 90^\circ\pmod{180^\circ}$, so $x/2\equiv 20^\circ\pmod{60^\circ} \implies \angle ABC \equiv 80^\circ \pmod{240^\circ}$. Thus, we get $\angle ABC = 80^\circ$ and $\angle ACB = 40^\circ$.
24.05.2021 12:46
24.05.2021 15:58
orl wrote: Let $ABC$ be a triangle with $\angle BAC = 60^{\circ}$. Let $AP$ bisect $\angle BAC$ and let $BQ$ bisect $\angle ABC$, with $P$ on $BC$ and $Q$ on $AC$. If $AB + BP = AQ + QB$, what are the angles of the triangle? Nice problem. Here's another solution. Take Point $D$ such that $\angle ABD=60^\circ\implies \triangle ABD$ is equilateral, Let $AP\cap BD=H$ So $PD=BP$ Take Point $E\in BC$ such that $BE>BD$ and $DE=PD=BP$ Also take Point $F$ such that $BF>BA$ and $AF=BP$ and observe we have another equilateral $\triangle BFE$ Now take point $G\in BQ$ Such that $BG>BQ$ and $QG=AQ$ Claim 1-: $B$ is circumcenter of $\triangle FGE$ Prove-: it is Trivial observation As $BG=BE=BF$ Take Point $J$ Such that $BG=BJ$ Claim 2-: $GJ=FG=JE$ Prove-: First observe $\triangle BFG\cong \triangle BJE \implies FG=JE, \angle GFE=\angle JEF$ and also $FE||GJ$ So $GJEF$ is cyclic isosceles Trapezium. So $GJ=FG=JE$ Claim 3-: $\angle FBG=20^\circ$ Prove-: By Claim $2$ We get $\angle FEG=\frac{\angle FEJ}{2}$ and By Claim $1$ we get $\angle GEF=\frac{\angle FBG}{2}$ and $\angle EFG=\angle FEJ=\frac{60-\angle FBG}{2}$ So we get $\frac{\angle FBG}{2}=\frac{60-\angle FBG}{4}\implies \angle FBG=20^\circ$ Now By claim $3$ we get angles of $\triangle ABC$ are $\{40^\circ, 60^\circ, 80^\circ\}$ $\blacksquare$ Edit-: 200th Post in HSO
02.02.2022 03:25
I think bashing on this one is an insult to the problem. Here is a synthetic solution: Let $B_{1}\in AC$ and $C_{1}\in AB$, so that $QB_{1}=QB$ and $BP=BC_{1}$ and $Q$ is between $A$ and $B_{1}$ and $B$ is between $A$ and $C_{1}$, and we have that: $$AB_{1}=AQ+QB_{1}=AQ+QB=AB+BP=AB+BC_{1}=AC_{1}\Longrightarrow \angle C_{1}AB_{1}=60^{\circ}, AB_{1}=AC_{1}\Longrightarrow \triangle AB_{1}C_{1}\text{ is equilateral}$$Notice that $\angle BC_{1}P=\angle BPC_{1}=\frac{\beta}{2}$ and $P$ lies on the angle bisector in an equilateral triangle, so $\triangle PAC_{1}\cong \triangle PAB_{1}$ $\Longrightarrow \angle PB_{1}A=\angle PC_{1}A=\frac{\beta}{2}$. Now assume that $P\not\in BB_{1}$. Then $QB=QB_{1}$ by construction and $\angle PBQ=\angle PB_{1}Q$, so since $P$ lies in the interior of $\triangle QBB_{1}$, then that'd mean that $P$ lies on the perpendicular bisector of $BB_{1}$, so $PQ\perp BB_{1}\Longrightarrow \angle BQP=\angle B_{1}QP$, so $P$ is the $A$-excenter for $\triangle ABQ$, which implies that $\angle PBQ=\angle PBC_{1}\Longrightarrow \frac{3}{2}\beta=180^{\circ}\Longrightarrow \beta=120^{\circ}$, which implies that $\gamma=0$, which is obviously impossible. Therefore $P\in BB_{1}\Longrightarrow C\equiv B_{1}\Longrightarrow \gamma=\frac{\beta}{2}$, so $\beta=80^{\circ}$ and $\gamma=40^{\circ}$ and we're done!
22.02.2022 18:34
lol. Let $\cos \theta=x$ where $\theta=\angle ABQ=\angle CBQ$. Then we must solve $$3(4x^3-2x^2-2x+1)^2=(1-x^2)(4x^2-6x+2)^2$$and we can factor out $(2x-1)^3$ since $x=\frac{1}{2}$ is extraneous which gives $$8x^3-6x+1=0\iff \cos 3\theta=-\frac{1}{2}$$and since $\theta<60^{\circ}$ this means that $3\theta = 120^{\circ}$ and $\theta = 40^{\circ}$. Answer is $\angle A, \angle B, \angle C = 60^{\circ}, 80^{\circ}, 40^{\circ}$.
22.02.2022 18:44
the sextic comes from bashing out $$1+\frac{\sin 30^{\circ}}{\sin(2\theta+30^{\circ})}=\frac{\sin \theta + \sin 60^{\circ}}{\sin(\theta + 60^{\circ})}$$
05.03.2022 03:30
Yolo. Let $D$ be on $AB$ extended such that $ACD$ is equilateral. Let $C'$ be on $AC$ such that $QB=QC'$ and $A,C'$ are on opposite sides of $Q.$ Let $D$ be on $AB$ such that $BP=BD$ and $A,D$ are on opposite sides of $B.$ Note that $AB+BP=AQ+QB$ implies $AC'=AB+BD=AQ+QC'=AD$ so $AC'D$ is equilateral. Since $AP$ is an angle bisector, $\angle AC'P=\angle ADP=\angle BPD=\frac{1}{2}\angle PBA=\angle PBQ.$ However, we have $QC'=QB,QP=QP,$ and $\angle QC'P=\angle QBP,$ so by quick sine law on $\triangle QPC',\triangle QPB$, we get that $\sin QPC'=\sin QPB.$ If they are supplementary then $C=C'$ and so $\angle BCD=\angle PDC=\frac{1}{2}\angle BPD=\frac{1}{2}\angle ACB$ and $\angle BCD+\angle ACB=60^\circ$ so $\angle ACB=40^\circ,\angle ABC=80^\circ.$ If they are the same then $PB=PC=PD,$ so $P$ is the circumcenter of $BCD$ which is impossible because $\angle CDB\neq 90^\circ.$ Thus, our only solution is $\{40^\circ,60^\circ,80^\circ\}$
11.06.2022 03:34
Let $X$ and $Y$ be the points on ray $\overrightarrow{AB}$ and segment $\overline{AC}$ such that $BX=BP$ and $BQ=QY,$ respectively. Then, $\triangle APX\cong\triangle APY$ so $$\alpha=\angle AYP=\angle PXA=90-\tfrac{1}{2}\angle XBP=\angle PBQ=\angle QBP.$$Suppose FTSOC that $Y$ does not lie on $\overline{PB}.$ Then, $$\angle PBY=\angle PBQ-\angle YBQ=\angle QYP-\angle QYB=\angle QYP$$so $PX=PY=PB$ and $\alpha=60.$ Then, $\angle A+\angle B=60+2\alpha=180,$ meaning $\angle C=0,$ a contradiction. Hence, $B,C,$ and $P$ are collinear meaning $Y=C.$ Therefore, the sum of the angles of $\triangle ABC$ is $60+3\alpha$ so $\alpha=40$ and $\angle A=60,\angle B=80,\angle C=40.$ $\square$
04.08.2022 03:58
pbed fuzi L wrote: aime p14 lvl bash in imo p5??? WOLOG let $R = \frac 12$ and $\angle ABQ = \angle QBC = x$. By Law of Sines on $\triangle ABP$, $BP = \frac{\sin C}{2\sin(150^{\circ}-2x)}$, and by LoS on $\triangle ABQ$, $AQ = \frac{\sin C\sin x}{\sin(120^{\circ}-x)}, QB = \frac{\frac{\sqrt{3}}{2}\sin C}{\sin(120^{\circ}-x}$. Thus, we can encode the given as\begin{align*}AB + BP &= AQ + QB \\ c + \frac{\sin C}{2\sin(150^{\circ}-2x)} &= \frac{\sin C\sin x}{\sin(120^{\circ}-x)} + \frac{\frac{\sqrt{3}}{2}\sin C}{\sin(120^{\circ}-x} \\ 1 + \frac{1}{2\sin(150^{\circ} - 2x)} &= \frac{\sin x + \sin 60^{\circ}}{\sin(120^{\circ}-x)}\\ 1 + \frac{1}{2\sin(150^{\circ} - 2x)} &= \frac{\cos\left(\frac x2 - 30^{\circ}\right)}{\cos\left(\frac x2 + 30^{\circ}\right)} \\ 2\cos\left(\frac x2 - 30^{\circ}\right)\sin(150^{\circ}-2x)&= 2\cos\left(\frac x2 + 30^{\circ}\right)\sin(150^{\circ}-2x) + \cos\left(\frac x2 +30^{\circ}\right) \\ \sin\left(120^{\circ}-\frac{3x}{2}\right) + \sin \left(\frac{5x}{2}\right) &= \sin\left(\frac{3x}{2}\right) + \sin\left(120^{\circ} - \frac{5x}{2}\right) + \cos\left(\frac x2 + 30^{\circ}\right) \\ \sin \left(\frac{5x}{2}\right) -\sin\left(\frac{3x}{2}\right) &= \sin\left(120^{\circ} - \frac{5x}{2}\right) - \sin\left(120^{\circ}-\frac{3x}{2}\right) + \cos\left(\frac x2 + 30^{\circ}\right) \\ 2\cos(2x)\sin\left(\frac x2\right) &= -2\cos(120^{\circ}-2x)\sin\left(\frac x2\right) + \cos\left(\frac x2 + 30^{\circ}\right) \\ 2\sin\left(\frac x2\right)\left[\cos(2x) + \cos(120^{\circ} - 2x)\right] &= \cos\left(\frac x2 + 30^{\circ}\right) \\ 2\sin\left(\frac x2\right)\cos(2x-60^{\circ}) &= \cos\left(\frac x2 + 30^{\circ}\right) \\ \sin x \cos(2x-60^{\circ}) &= \cos\left(\frac x2 + 30^{\circ}\right) \cos\left(\frac x2\right) \\ \sin(3x-60^{\circ}) &= \cos(30^{\circ}) \\ x &= 40^{\circ}, 60^{\circ}, 80^{\circ}.\end{align*}And we're FINALLY done. godermit this problem sucks
16.08.2022 22:49
05.06.2023 06:19
orl wrote: Let $ABC$ be a triangle with $\angle BAC = 60^{\circ}$. Let $AP$ bisect $\angle BAC$ and let $BQ$ bisect $\angle ABC$, with $P$ on $BC$ and $Q$ on $AC$. If $AB + BP = AQ + QB$, what are the angles of the triangle? Wow!! A G8!! Can someone check if this is right (especially the second solution)? WLOG BP=1.
Simplifying this, we get angles of 40, 80, and 60 degrees. Second solution: (Latexing this was a NIGHTMARE.) In these types of problems with little points and information, we must surely make a construction (for once I will make one!). The easiest way to do so is to make two segments' sum into two segments' sum which are collinear, since it is much simpler that way. Then we let B' on AB s.t. $BP=BB'$, C' on AC s.t. $QB=QC'$ (Remark: if this wasn't geogebra it would be hard to guess what type of diagram meaning it would be hard to tell C coincides with C'). We have $AB+BB'=AB+BP=AQ+QB=AQ+QC'$, or $AB'=AC'$ so $\triangle AB'C'$ is equilateral. Now, suppose B, P, and C' are not collinear. Then, we have $\angle ABC=2b$ gives $\angle BB'P=\angle BPB'=b$. By corresponding angles, BQ//B'P, and $\angle PB'C'=60-b$, and because B'PC' is isosceles, we have $\boxed{\angle{B'PC'}=60+2b}$. $\boxed{\angle BPC'}=\angle BPB'+\angle B'PC'=b+60+2b=\boxed{60+3b}$, $\angle BQC'=60+b$, and since BQC' is isosceles, $\angle BC'A=\angle BC'Q=\boxed{60-b/2}$; Finally, $\boxed{\angle{PBC'}}$=<PBB'-<C'BB'=<PBB'-(180-<BC'B'-<BB'C')=<PBB'-(180-<BB'C'-(<AC'B'-<BC'A))=$180-2b-(180-60-(60-(60-b/2)))=\boxed{60-3b/2}$. Then $\boxed{\angle BC'P=180-(60-3b/2)-(60+3b)=60-3b/2}$, so $\boxed{BP=PC'}$. We knew that QBC' was isosceles, so QP bisects <BQC, which gives BA/AC=BP/PC=BQ/QC. By Law of Sines, we have sin<QBC/sin<QCB=QC/QB=AC/AB=sin<ABC/sin<ACB, which gives sinb=sin<QBC=sin<ABC=sin2b, or 2b+b=180 b=60, and <ABC=120. However, this makes a degenerate triangle ABC, which is a contradiction. Then B, P, C' are collinear, so C=C' and therefore BQ=QC'=QC which means <QCB=<QBC=b, and 2b+b=180-60=120, so b=40 and then our angles are 40, 60, and 80 degrees. In fact, while the synthetic way is harder to see where to go, whereas trig you always know what to do, the synthetic would probably be quicker even though the solutions length is longer, because it is just a bunch of simple angle chasing, with one obvious construction. $\blacksquare$
06.11.2023 06:07
Solved with popop614 Let $P'$ be the reflection of $P$ over the exterior angle bisector of $B$ in triangle $ABC$, and let $B'$ be the reflection of $B$ over the angle bisector of $\angle BQC$. Then, the length condition means that $AB'P'$ is equilateral. Assume that $BPB'$ are not collinear. Now, note that $P$ is symmetric with respect to $AP'$ and $AB'$, so $\triangle PP'B'$ is isosceles. It is also symmetric with respect to $QB$ and $QB'$, so $BPB'$ is isosceles, implying $BP'=BP=PB'=PP'$. In other words, $BPP'$ is equilateral, so $\angle ABC = 120$, implying $ABC$ is degenerate. Therefore, $BPB'$ collinear, so $B'=C$. Therefore, $2\angle BCA = \angle ABC$. This implies that $ABC$ has angles $40$, $60$, and $80$.
21.04.2024 18:12
one of my first synthetic sols to 'those' geos
09.05.2024 12:01
imagine knowing synthetic oops Set $\angle ABQ = x$, and WLOG let $AB=1$. Using Law of Sines, we see that \[BP = \frac{\sin 30^\circ}{\sin (150^\circ-2x)},\]\[AQ = \frac{\sin x}{\sin (120^\circ-x)},\]\[QB = \frac{\sin 60^\circ}{\sin (120^\circ-x)}.\] Thus, the given condition translates to \[1+\frac{\sin 30^\circ}{\sin (150^\circ-2x)} = \frac{\sin x}{\sin (120^\circ-x)} + \frac{\sin 60^\circ}{\sin (120^\circ-x)},\] whence the RHS simplifies to \[\frac{\sin x + \sin 60^\circ}{\sin (60^\circ+x)} = \frac{2 \sin (\tfrac{1}{2} (x+60^\circ)) \cos (\tfrac{1}{2} (x-60^\circ))}{2 \sin (\tfrac{1}{2} (x+60^\circ)) \cos (\tfrac{1}{2} (x+60^\circ))}.\] Now, suppose that $y = \tfrac{x}{2}$ for brevity; we now have \begin{align*} &\phantom{\iff} 1+\frac{\sin 30^\circ}{\sin (150^\circ-4y)} = \frac{\cos (y-30^\circ)}{\cos (y+30^\circ)} \\ &\iff \frac{\sin 30^\circ}{\sin (150^\circ-4y)} = \frac{\cos (y-30^\circ)}{\cos (y+30^\circ)} -1 \\ &\iff \frac{\sin 30^\circ}{\sin (150^\circ-4y)} = \frac{\cos (y-30^\circ) - \cos (y+30^\circ)}{\cos (y+30^\circ)} \\ &\iff \frac{\sin 30^\circ}{\sin (150^\circ-4y)} = \frac{\sin y}{\cos (y+30^\circ)}. \end{align*} This is equivalent to \begin{align*} \cos (y+30^\circ) &= 2 \sin y \sin (150^\circ - 4y) \\ &= \cos (5y-150^\circ) - \cos (150^\circ - 3y) \\ &= - \cos (5y+30^\circ) + \cos (3y + 30^\circ). \end{align*} Rearranging, we get \[\cos (3y+30^\circ) = \cos (y+30^\circ) + \cos (5y+30^\circ) = 2 \cos (3y+30^\circ) \cos (2y)\]\[\implies \cos (3y+30^\circ) (2 \cos (2y) - 1) = 0.\] The latter case does not produce any solutions as we require $\angle B < 120^\circ$ and the former case gives $y = 20^\circ$, upon which we find $\angle B = 80^\circ$ and $\angle C = 40^\circ$ as the only solutions.
03.08.2024 04:23
The problem is equilavent to this Trigonometric Equation for $\alpha \in (0,60^{\circ})$.
23.09.2024 01:02
Let AB = c. Now by law of sines on $\triangle ABP$, we get that $BP = \frac{c \cdot \sin 30}{\sin (150 - 2\beta)}$. Also by law of sines on $\triangle ABQ$, we get that $AQ = \frac{c \cdot \sin \beta}{\sin (120 - \beta)}$ and $BQ = \frac{c \cdot \sin 60}{\sin (120 - \beta)}$ $\Rightarrow$ since AB + BP = AQ + QB, we have that $c + \frac{c \cdot \sin 30}{\sin (150 - 2\beta)} = \frac{c \cdot \sin \beta}{\sin (120 - \beta)} + \frac{c \cdot \sin 60}{\sin (120 - \beta)}$ $\Longleftrightarrow$ $1 + \frac{\sin 30}{\sin (150 - 2\beta)} = \frac{\sin \beta + \sin 60}{\sin (120 - \beta)}$ $\Longleftrightarrow$ $\frac{\sin (150 - 2\beta) + \sin 30}{\sin (150 - 2\beta)} = \frac{\sin \beta + \sin 60}{\sin (120 - \beta)}$ $\Longleftrightarrow$ $\frac{\sin (150 - 2\beta) \cdot (\sin \beta + \sin 60)}{\sin (120 - \beta)} = \sin 30 + \sin (150 - 2\beta)$. Since $\sin (x) + \sin 60 = 2\sin (\frac{\beta + 60}{2}) \cdot \cos (\frac{\beta - 60}{2})$ and $\sin (120 - \beta) = \sin (60 + \beta) = 2\sin(\frac{60 + \beta}{2}) \cdot \cos (\frac{60 + \beta}{2})$, we can reduce the problem to $\frac{\sin (150 - 2\beta) \cdot ( 2\sin (\frac{\beta + 60}{2}) \cdot \cos (\frac{\beta - 60}{2}))}{2\sin (\frac{60 + \beta}{2}) \cdot \cos (\frac{60 + \beta}{2})} = \sin 30 + \sin(150 - 2\beta)$ $\Longleftrightarrow$ $\frac{\sin (150 - 2x) \cdot \cos (\frac{\beta - 60}{2})}{\cos (\frac{\beta + 60}{2})} = \sin 30 + \sin(150 - 2\beta)$ $\Longleftrightarrow$ $\frac{\cos (\frac{\beta - 60}{2})}{\cos (\frac{\beta + 60}{2})} = \frac{\sin 30}{\sin(150 - 2\beta)} + 1$. Now we get $\frac{\cos (\frac{\beta - 60}{2})}{\cos (\frac{\beta + 60}{2})} - 1 = \frac{\cos (\frac{\beta - 60}{2}) - \cos (\frac{\beta + 60}{2})}{\cos (\frac{\beta + 60}{2})} = \frac{-2 \sin (\frac{\beta}{2}) \cdot \sin (-30)}{\cos (\frac{\beta + 60}{2})}$ $\Rightarrow$ we get $\frac{-2 \sin (\frac{\beta}{2}) \cdot \sin (-30)}{\cos (\frac{\beta + 60}{2})} = \frac{\sin 30}{\sin(150 - 2\beta)}$ $\Longleftrightarrow$ $\frac{2\sin (\frac{\beta}{2})}{\cos (\frac{\beta + 60}{2})} = \frac{1}{\sin (150 - 2\beta)}$ $\Longleftrightarrow$ $2\sin (\frac{\beta}{2}) \cdot \sin (150 - 2\beta) = \cos (\frac{\beta}{2} + 30)$. Multiplying by $2\cos (\frac{\beta}{2})$, we get $2\sin (\beta) \cdot \sin (150 - 2\beta) = 2\cos (\frac{\beta}{2} + 30) \cdot \cos (\frac{\beta}{2})$ $\Longleftrightarrow$ $- \cos (150 - \beta) - \cos (150 - 3\beta) = \cos(\beta + 30) + \cos 30$ $\Longleftrightarrow$ $\cos(150 - 3\beta) = \cos 30$ $\Longleftrightarrow$ $\beta = 40^{\circ}$ $\Rightarrow$ $\angle ABC = 2\beta = 80^{\circ}$ and $\angle ACB = 120 - 2\beta = 40^{\circ}$ $\Rightarrow$ $\angle A = 60^{\circ}$, $\angle B = 80^{\circ}$, $\angle C = 40^{\circ}$ and we are ready.