Let $ m \angle AMB' = \alpha$, $ m \angle BMC' = \beta$, and let$ m \angle CMA' = \gamma$. $ MA = MC' \csc \alpha$, $ MB = MC' \sin \beta$, and $ MC = = MA' \csc \gamma$. Then $ \frac {MA' \cdot MB' \cdot MC}{MA \cdot MB \cdot MC} = \sin \alpha \sin \beta \sin \gamma$.
Since $ \sin \alpha \sin \beta \sin \gamma$ is positive, it is sufficient to find the values of $ \alpha, \beta, \gamma$ that maximize that expression. By trig Ceva, $ \sin \alpha \sin \beta \sin \gamma = \sin (A - \alpha) \sin (B - \beta) \sin (C - \gamma)$, (where $ A = m \angle CAB$, $ B = m \angle ABC$, and $ C = m \angle BCA$) so we in fact seek to maximimize $ \sin \alpha \sin(A - \alpha) \sin \beta \sin(B - \beta) \sin \gamma \sin (C - \gamma)$. But this is equal to $ \frac {1}{8}(\cos(A - 2\alpha) - \cos A)(\cos(B - 2\beta) - \cos B)(\cos(C - 2 \gamma) - \cos C)$.
Since $ 0 \leq \cos(A - 2\alpha) - \cos A \leq 1 - \cos A$, $ 0 \leq \cos(B - 2\beta) - \cos B \leq 1 - \cos B$, and $ 0 \leq \cos(C - 2 \gamma) - \cos C \leq 1 - \cos C$, we have that $ \frac {1}{8}(\cos(A - 2\alpha) - \cos A)(\cos(B - 2\beta) - \cos B)(\cos(C - 2 \gamma) - \cos C)$$ \leq \frac {(1 - \cos A)(1 - \cos B)(1 - \cos C)}{8}$, with equality holding iff $ \alpha = \frac {A}{2}$, $ \beta = \frac {B}{2}$, and $ \gamma = \frac {C}{2}$, so the point $ M$ that maximizes $ p(M)$ is the incenter.
$ 8p(M)^2 = (1 - \cos A)(1 - \cos B)(1 - \cos C)$. If $ f(x) = \ln(1 - \cos x)$, $ f''(x) = \frac {1}{\cos x - 1} < 0$, so $ f$ is concave. Hence, by Jensen's inequality, $ f(A) + f(B) + f(C) \leq 3f \left (\frac {A + B + C}{3} \right)$, that is, $ (1 - \cos A)(1 - \cos B)(1 - \cos C) \leq \left (1 - \cos \frac {\pi}{3} \right)^3$, with equality holding iff $ A = B = C$. Hence, $ p(M)$ is maximized when the triangle is equilateral.