ISL 2001 C2 wrote:
Let $n$ be an odd integer greater than 1 and let $c_1, c_2, \ldots, c_n$ be integers. For each permutation $a = (a_1, a_2, \ldots, a_n)$ of $\{1,2,\ldots,n\}$, define $S(a) = \sum_{i=1}^n c_i a_i$. Prove that there exist permutations $a \neq b$ of $\{1,2,\ldots,n\}$ such that $n!$ is a divisor of $S(a)-S(b)$.
Solution.
Let $\mathcal{P}$ be the set of all permutations of $\{1,2,3,\ldots,n\}.$ Assume for the sake of contradiction that there doesn't exist such $a\ne b.$ Consider the multiset $T=\{S(\pi)\mid \pi\in\mathcal P\},$ because of our assumption and $|T|=n!$ , when we take $T$ modulo $n!$ we get the complete set of residues modulo $n!~.$ Let $X=(x_1,x_2,x_3,\ldots,x_n)$ be the permutation such that
\[S(X)\equiv \left(\frac{n+1}{2}\right)\left(\sum_{i=1}^{n}c_i\right)\pmod{n!}\]Define $\overline{X}=(n+1-x_1,n+1-x_2,\ldots,n+1-x_n),$ note that $X\ne \overline{X}$ and that $\overline{X}$ is a valid permutation.
Now,
\[S(\overline{X})=\sum_{i=1}^n c_i(n+1-x_i)=(n+1)\sum_{i=1}^n c_i-S(X)\equiv (n+1)\sum_{i=1}^n c_i- \left(\frac{n+1}{2}\right)\left(\sum_{i=1}^{n}c_i\right)\pmod{n!}\equiv S(X)\pmod{n!}\]Which is a contradiction to our assumption. And we are done. $\blacksquare$