Problem
Source: IMO ShortList 2001, algebra problem 6
Tags: IMO Shortlist, IMO 2001, inequalities, hojoo lee, IMO
06.11.2004 23:26
this inequality is homogeneous so we can put $a+b+c=1$ and apply Jensen's inequality for $f(x)=\frac{1}{\sqrt{x}}$ so we have : $\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{b}{\sqrt{b^2+8ac}} \geq \frac{1}{\sqrt{a^3+b^3+c^3+24abc}}$ but : $1=(a+b+c)^3=a^3+b^3+c^3+6abc+3(a^2b+a^2c+b^2a+b^2c+c^2a+c^2b) \geq a^3+b^3+c^3+24abc$ , so indeed $\frac{1}{\sqrt{a^3+b^3+c^3+24abc}} \geq 1$ .
23.09.2006 02:14
Sorry for reviving this post, firstly. I had a question about this inequality. Why does $a+b+c = 1$? Why can we do this?
23.09.2006 02:25
Because the inequality is homogenous. Let's say $a+b+c=k$ Taking $a'=a/k, b'=b/k, c'=c/k$ would give the same result but $a'+b'+c'=1$
22.04.2007 02:59
Rafal wrote: this inequality is homogeneous so we can put $a+b+c=1$ and apply Jensen's inequality for $f(x)=\frac{1}{\sqrt{x}}$ so we have : $\frac{a}{\sqrt{a^{2}+8bc}}+\frac{b}{\sqrt{b^{2}+8ac}}+\frac{b}{\sqrt{b^{2}+8ac}}\geq \frac{1}{\sqrt{a^{3}+b^{3}+c^{3}+24abc}}$ but : $1=(a+b+c)^{3}=a^{3}+b^{3}+c^{3}+6abc+3(a^{2}b+a^{2}c+b^{2}a+b^{2}c+c^{2}a+c^{2}b) \geq a^{3}+b^{3}+c^{3}+24abc$ , so indeed $\frac{1}{\sqrt{a^{3}+b^{3}+c^{3}+24abc}}\geq 1$ . I don't exactly understand how you are applying Jensen's.
22.04.2007 09:03
i think the problem can be solved by using UCT by using UCT ,we need to prove that $\frac{a}{\sqrt{a^{2}+8bc}}\geq \frac{a^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}}$ it follows that $(2a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}})(b^{\frac{4}{3}}+c^{\frac{4}{3}}) \geq 8a^{\frac{2}{3}bc}$ writing two similar inequalities of b and c and adding them up , we obtain the desire result
22.04.2007 09:11
@Phelpedo: $\text{LHS}=af(a^{2}+8bc)+bf(b^{2}+8ca)+cf(c^{2}+8ab)$, that is all because $a+b+c=1$.
22.04.2007 20:19
i have an other idea : we can put, $e^{x}=\frac{bc}{a^{2}}$, $e^{y}=\frac{ac}{b^{2}}$ and $e^{z}=\frac{ab}{c^{2}}$to get the inequality we have only to apply Jensen to the function $f(x)=\frac{1}{1+e^{x}}$ with $\lambda_{1}=\lambda_{2}=\lambda_{3}=\frac{1}{3}$ but i'm not sure of the convexity of $f$
23.04.2007 04:07
HTA wrote: i think the problem can be solved by using UCT by using UCT ,we need to prove that $\frac{a}{\sqrt{a^{2}+8bc}}\geq \frac{a^{\frac{4}{3}}}{a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}}}$ it follows that $(2a^{\frac{4}{3}}+b^{\frac{4}{3}}+c^{\frac{4}{3}})(b^{\frac{4}{3}}+c^{\frac{4}{3}}) \geq 8a^{\frac{2}{3}bc}$ writing two similar inequalities of b and c and adding them up , we obtain the desire result What does UCT stand for?
23.04.2007 19:14
i'have made a mistake th efunction $f(x)=\frac{1}{1+8e^{x}}$
01.06.2007 08:33
That function $\frac{1}{1+8e^{x}}$ is only convex when $e^{x}> 1/4$. However, things being less than 1/4 does not give the inequality much room to escape! EDIT: If we have e^x <= 1/4 , then we can apply Jensen to the remaining two variables to obtain a one-variable inequality, which then dies to taking a derivative. So, this method *does* work, however ugly it is.
03.02.2008 10:46
Another solution: Let $ x = \sqrt \frac {a^2}{a^2 + 8bc}, y = \sqrt \frac {b^2}{b^2 + 8ac}, z = \sqrt \frac {c^2}{c^2 + 8ab}$. clearly, $ \frac {1}{x^2} = 1 + \frac {8bc}{a^2}$, so $ ( \frac {1}{x^2} - 1 )( \frac {1}{y^2} - 1) (\frac {1}{z^2} - 1) = 512$. We wish to prove that $ x + y + z \geq 1$. Let's prove that when $ x + y + z = 1$, then $ ( \frac {1}{x^2} - 1 )( \frac {1}{y^2} - 1) (\frac {1}{z^2} - 1) \geq 512$. This is easy: $ ( \frac {1}{x^2} - 1 )( \frac {1}{y^2} - 1) (\frac {1}{z^2} - 1) = \frac { (1 - x)(1 + x)(1 - y)(1 + y)(1 - z)(1 + z) }{x^2 y^2 z^2} = \frac { (x + y)(y + z)(x + z)(2x + y + z)(2y + x + z)(2z + x + y)}{x^2 y^2 z^2} \geq \frac { 512 \sqrt {xy} \sqrt {yz} \sqrt {xz} \sqrt [4]{x^2 yz} \sqrt [4]{y^2 xz} \sqrt [4]{z^2 xy} }{x^2 y^2 z^2} = 512$, as required. This is sufficient, since for some $ a,b,c$, if $ ( \frac {1}{a^2} - 1 )( \frac {1}{b^2} - 1) (\frac {1}{c^2} - 1) = 512$ ... (*), letting $ \lambda a = x, \lambda b = y, \lambda c = z$, where $ x + y + z = 1$, then we have, $ ( \frac {1}{x^2} - 1 )( \frac {1}{y^2} - 1) (\frac {1}{z^2} - 1) \geq 512$ - then comparing with (*), we have $ \lambda \leq 1$, so $ a + b + c \geq 1$.
04.02.2008 17:46
Here's another solution, quite a simple one. by Cauchy-Schwarz: \[ (\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}})^2 (\sum_{cyc}{a(a^2+8bc)})\] \[ \geq(a+b+c)^3\] And: \[ (a+b+c)^3\geq\sum_{cyc}{a(a^2+8bc)}\] Thus, we get: \[ (\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}})^2\] \[ \geq\frac{(a+b+c)^3}{(\sum{a(a^2+8bc)})}\] \[ \geq1\] $ Q.E.D.$
09.06.2008 00:54
Because of the homogeneity we can take $ a.b.c = 1$. Inequality equivalent to $ \sqrt {\frac {a^3}{a^3 + 8}} + \sqrt {\frac {b^3}{b^3 + 8}} + \sqrt {\frac {c^3}{c^3 + 8}}\geq1$. Let $ a = \frac {2}{x} , b = \frac {2}{y} , c = \frac {2}{z}$ . $ \frac {1}{\sqrt {1 + x^3}} + \frac {1}{\sqrt {1 + y^3}} + \frac {1}{\sqrt {1 + z^3}}\geq1$ By the Arithmetic Geometric Mean Inequality $ \sqrt {(x + 1)(x^2 - x + 1)}\leq\frac {x^2 + 2}{2}$ and we will prove that $ \frac {2}{x^2 + 2} + \frac {2}{y^2 + 2} + \frac {2}{z^2 + 2}\geq1$ $ \Longleftrightarrow$ $ 2(x^2y^2 + y^2z^2 + x^2z^2) + 8(x^2 + y^2 + z^2) + 24\geq2(x^2y^2 + y^2z^2 + x^2z^2) + 4(x^2 + y^2 + z^2) + x^2y^2z^2$ $ \Longleftrightarrow$ $ x^2 + y^2 + z^2\geq12$ which is obviously true. ($ x.y.z=8$)
25.06.2008 01:43
What does UCT stand for? If it means showing that each of three fractions is greater the f(a)/(f(a)+f(b)+f(c)), hence their sum must be greater then 1, then what is the motivation for choosing f(x)=$ x^{4/3}$?
20.09.2009 14:17
Here is my AM-GM's proof: Clearly,the problem is equivalent to prove that : $ \sum \frac{1}{ \sqrt{8x+1} } \geq 1$ With $ x,y,z \geq 0$ and $ xyz=1$ Let $ 8x+1=a^2,8y+1=b^2$ and $ 8z+1=c^2$; We have to prove that : $ ab+bc+ca \geq abc$ with $ a,b,c \geq 1$ and $ (a^2-1)(b^2-1)(c^2-1)=512 \Leftrightarrow a^2b^2c^2-(a^2b^2+b^2c^2+c^2a^2)=513-(a^2+b^2+c^2)$; Squaring both sides,the inequality becomes: $ \sum a^2b^2 +2abc(a+b+c) \geq a^2b^2c^2$ Wich can be reduced to: $ a^2+b^2+c^2+2abc(a+b+c) \geq 513$ But this is clearly true because : $ abc = \sqrt{(8x+1)(8y+1)(8z+1)} \geq 27$ $ \sum a \geq 3 \sqrt[3]{abc} \geq 9$ $ \sum a^2 \geq \frac{ (\sum a)^2}{3} \geq 27$ Done !
25.11.2009 04:49
orl wrote: Prove that for all positive real numbers $ a,b,c$, $ \frac {a}{\sqrt {a^2 + 8bc}} + \frac {b}{\sqrt {b^2 + 8ca}} + \frac {c}{\sqrt {c^2 + 8ab}} \geq 1.$ This problem is introduced as Example 2.2.1 on pp. 38-39 in new book : Ji Chen, Chao-Cheng Ji, Algebraic Inequalities (Mathematical Olympiad Proposition people Lecture), Shanghai Scientific & Technological Educational Publishing House, 2009, 225p. (ISBN 978-7-5428-4848-2/O·613) epitomy01 wrote: Let $ x = \sqrt \frac {a^2}{a^2 + 8bc}, y = \sqrt \frac {b^2}{b^2 + 8ca}, z = \sqrt \frac {c^2}{c^2 + 8ab},$ clearly, $ \frac {1}{x^2} = 1 + \frac {8bc}{a^2},$ so $ \left(\frac {1}{x^2} - 1\right)\left(\frac {1}{y^2} - 1\right)\left(\frac {1}{z^2} - 1\right) = 512.$ We wish to prove that $ x + y + z \geq 1.$ $ (x + y + z - 1)\left[1 + x + y + z + 2(yz + zx + xy) + 18xyz + 19xyz(x + y + z) + 57xyz(yz + zx + xy)\right]$ $ = 512x^2y^2z^2 - \prod{\left(1 - x^2\right)} + \sum{\frac {x}{2}(y - z)^2(4 + x + 19yz + 114xyz)}\geq0.$ See also : http://www.mathlinks.ro/viewtopic.php?t=118059 crazyfehmy wrote: $ \frac {1}{\sqrt {1 + x^3}} + \frac {1}{\sqrt {1 + y^3}} + \frac {1}{\sqrt {1 + z^3}}\geq1.$ By the Arithmetic Geometric Mean Inequality $ \sqrt {(x + 1)(x^2 - x + 1)}\leq\frac {x^2 + 2}{2}$ and we will prove that $ \frac {2}{x^2 + 2} + \frac {2}{y^2 + 2} + \frac {2}{z^2 + 2}\geq1.$ ($ xyz = 8$) The last problem is introduced as Example 2.2.12 on page 47 in the above book. See also : http://www.mathlinks.ro/viewtopic.php?t=32332
02.06.2010 21:44
Thank you very mych....
31.01.2011 07:57
\[ \frac{a}{\sqrt{a^{2}+8bc}}+\frac{b}{\sqrt{b^{2}+8ca}}+\frac{c}{\sqrt{c^{2}+8ab}}\geq 1 \] \[\sqrt{a^{2}+(2b)^{2}+(2c)^{2}}\geq \sqrt{a^{2}+8bc} \] similarly for other \[\sum {\frac{a}{\sqrt{a^{2}+8bc}}}\geq \sum{\frac{a}{a^{2}+(2b)^{2}+(2c)^{2}}}\] $X=\frac{b^{2}+c^{2}}{a^{2}}$ similarly for other \[\sum {\frac{1}{\sqrt{1+4X}}}\geq 1\] \[\sum{X}=2\] you know by AM HM inequality \[{\sum {\sqrt{1+4X}}}\sum {\frac{1}{\sqrt{1+4X}}}\geq 9\] then \[\sum{\frac{1}{\sqrt{1+4X}}}\geq \frac{9}{\sum{\sqrt{1+4X}}}\] then by RMS $\geq$ AM inequality %\[\sqrt{\frac{\sum{(1+4X)}}{3}} \geq \frac{\sum{\sqrt{(1+4X)}}{3}\] \[\frac{3}{\sum{(1+4X)}} \geq \sqrt{\frac{3}{\sum{(1+4X)}}}\] above rhs of inequality becomes \[\geq 3\sqrt{\frac{3}{3+4\sum{X}}}\] you know that \[\sum{X}=2\] \[\geq \sqrt{\frac{27}{11}} \] \[\geq 1.\] finally proved
31.01.2011 12:16
in previous message RMS \[\geq\] AM i have forget about raising square root to 1+4X so equation is like this \[\frac{3}{\sum{\sqrt{(1+4X)}}} \geq \sqrt{\frac{3}{\sum{(1+4X)}}}\] this is wrong \[ \frac{3}{\sum{(1+4X)}}\geq\sqrt{\frac{3}{\sum{(1+4X)}}} \]
03.12.2023 16:07
Generalization 1 Let $a,b,c,p,\lambda$ be positive reals. Then prove that $$\dfrac{a^p}{\sqrt{a^{2p}+\lambda bc}}+\dfrac{b^p}{\sqrt{b^{2p}+\lambda ca}}+\dfrac{c^p}{\sqrt{c^{2p}+\lambda ab}}\geq \dfrac{\lambda ^2}{4\left(3\sqrt[3]{\lambda ^2}+4\right)}$$
07.12.2023 08:29
We have the following by Holder's: \[\left(\sum_{cyc}\frac{a}{\sqrt{a^2+8bc}}\right)^2\left(\sum_{cyc}a(a^2+8bc)\right)\ge (a+b+c)^3\]so it suffices to prove \[(a+b+c)^3\ge \sum_{cyc}a(a^2+8bc)\]equivalently \[a^2b+ab^2+bc^2+b^2c+c^2a+ca^2\ge 6abc\]which is true by direct AM-GM. $\square$
23.08.2024 04:43
ehuseyinyigit wrote: Generalization 1 Let $a,b,c,p,\lambda$ be positive reals. Then prove that $$\dfrac{a^p}{\sqrt{a^{2p}+\lambda bc}}+\dfrac{b^p}{\sqrt{b^{2p}+\lambda ca}}+\dfrac{c^p}{\sqrt{c^{2p}+\lambda ab}}\geq \dfrac{\lambda ^2}{4\left(3\sqrt[3]{\lambda ^2}+4\right)}$$ Tangent line or holder
04.09.2024 20:41
05.09.2024 01:07
Bryan0224 wrote: Tangent line or holder Yes, it has a proof by Holder's Inequality.
05.09.2024 01:08
Generalization 2 For any $a,b,c,\lambda$ ($\lambda \geq 8$) positive reals, the inequality $$\dfrac{a}{\sqrt{a^{2}+\lambda bc}}+\dfrac{b}{\sqrt{b^{2}+\lambda ca}}+\dfrac{c}{\sqrt{c^{2}+\lambda ab}}\geq 1-\dfrac{\left(\sqrt[3]{\lambda ^2}-4\right)\left(\sqrt[3]{\lambda^2}+2\right)^2}{6\sqrt[3]{\lambda}\left(\lambda +2\sqrt[3]{\lambda}\right)+8}$$ holds.
05.09.2024 02:10
ehuseyinyigit wrote: Generalization 2 For any $a,b,c,\lambda$ ($\lambda \geq 8$) positive reals, the inequality $$\dfrac{a}{\sqrt{a^{2}+\lambda bc}}+\dfrac{b}{\sqrt{b^{2}+\lambda ca}}+\dfrac{c}{\sqrt{c^{2}+\lambda ab}}\geq 1-\dfrac{\left(\sqrt[3]{\lambda ^2}-4\right)\left(\sqrt[3]{\lambda^2}+2\right)^2}{6\sqrt[3]{\lambda}\left(\lambda +2\sqrt[3]{\lambda}\right)+8}$$ holds. Because :$$\frac{3}{\sqrt{1+\lambda}}\ge1-\dfrac{\left(\sqrt[3]{\lambda ^2}-4\right)\left(\sqrt[3]{\lambda^2}+2\right)^2}{6\sqrt[3]{\lambda}\left(\lambda +2\sqrt[3]{\lambda}\right)+8},\left(\lambda \geq 8\right).$$ .
05.09.2024 02:49
Nice! Here was the $n$-var extension (GENERALIZATION 3) :
05.09.2024 04:30
By Holder, $$\left( \sum_{cyc} \frac{a}{\sqrt{a^2 + 8bc}} \right)^2 \left( \sum_{cyc} a(a^2+8bc) \right) \geq (a+b+c)^3$$so it suffices to show that $a^3+b^3+c^3+24abc \leq (a+b+c)^3$, or $\sum_{sym} a^2b \geq 6abc$, which is trivial by Muirhead.
20.09.2024 13:06
huh.... $$\left( \sum_{cyc} \frac{a}{\sqrt{a^2 + 8bc}} \right)^2 \left( \sum_{cyc} a(a^2+8bc) \right) \geq (a+b+c)^3$$Lemma:$(a+b+c)^3\geq a^3+b^3+c^3+24abc$ Proof: $$(a+b+c)^3=a^3+b^3+c^3+3\left(\sum_{sym} a^2b\right) +6abc \ge24abc+a^3+b^3+c^3\ \iff \sum_{sym} a^2b\ge 6abc $$which is true by AM-GM and we are done $\quad\square$
22.09.2024 19:23
My first ever problem to post in this platform! Okay so we have to show that \[ \sum_{\text{cyc}} \frac{a}{\sqrt{a^2 + 8bc}} \geq 1. \] We can easily prove this by applying Hölder's inequality carefully. Let us choose \( p = 2 \) and \( q =1 \). Applying Hölder's gives us: \[ \sum_{\text{cyc}} \left( \frac{a}{\sqrt{a^2 + 8bc}} \right)^2 \cdot (a(a^2 + 8bc) \geq (a+b+c)^3. \] If we expand this, we get: \[ \sum_{\text{cyc}} \frac{a^2}{a^2 + 8bc} \geq \frac{(a+b+c)^3}{\sum_{\text{cyc}} a(a^2 + 8bc)}. \] Thus, it suffices to show that \[ \frac{(a+b+c)^3}{\sum_{\text{cyc}} a(a^2 + 8bc)} \geq 1, \] which is equivalent to proving \[ (a+b+c)^3 \geq \sum_{\text{cyc}} a(a^2 + 8bc). \] Now, we compute \[ \sum_{\text{cyc}} a(a^2 + 8bc) = \sum_{\text{cyc}} (a^3 + 8abc) = a^3 + b^3 + c^3 + 24abc. \] So we need to show that \[ (a+b+c)^3 \geq a^3 + b^3 + c^3 + 24abc. \] Using the expansion, we have: \[ (a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a). \] It suffices to prove that \[ 3(a+b)(b+c)(c+a) \geq 24abc. \] By the AM-GM inequality, we can derive: \[ a^2b + a^2c + ab^2 + ac^2 + b^2c + bc^2 \geq 6abc. \] We can show this using AM-GM as follows: 1. For \( a^2b + b^2c + c^2a \): \[ a^2b + b^2c + c^2a \geq 3 \sqrt[3]{(a^2b)(b^2c)(c^2a)} = 3abc. \] 2. For \( ab^2 + bc^2 + ca^2 \): \[ ab^2 + bc^2 + ca^2 \geq 3 \sqrt[3]{(ab^2)(bc^2)(ca^2)} = 3abc. \] Adding these inequalities gives: \[ a^2b + a^2c + ab^2 + ac^2 + b^2c + bc^2 \geq 6abc. \] Thus, we conclude that \[ \sum_{\text{cyc}} \frac{a}{\sqrt{a^2 + 8bc}} \geq 1, \] and the proof is complete.
26.09.2024 14:52
Claim: $\sum_{cyc} a(a^2 + 8bc) \le (a+b+c)^3$. Proof: Expand to get Muirhead's inequality. $\square$ Now, by Holder's inequality, $$\left(\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}}\right)^2 \left((a+b+c\right)^3)$$$$ \ge \left(\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}}\right)^2 \left(\sum_{cyc} a(a^2 + 8bc) \right)$$$$\ge \left(\sum_{cyc} {a}\right)^3,$$so we're done.
26.09.2024 18:12
I have discussed this problem as an application of Holder in my inequality tutorial playlist. Here is the video
13.12.2024 02:44
It’s pretty simple. Just apply Cauchy schwarz then am gm kills the problem
13.12.2024 03:30
By Holder's Inequality, $$\text{LHS}^2 \cdot \left( \sum_{cyc} a(a^2+8bc) \right) \geq (a+b+c)^3,$$so it suffices to show that $$a^3+b^3+c^3+24abc \leq (a+b+c)^3$$which is well-known. (for a complete proof though, note we can fully expand everything and it will reduce to Muirhead.) QED