Problem

Source: IMO ShortList 2002, algebra problem 5

Tags: linear algebra, algebra, system of equations, IMO Shortlist



Let $n$ be a positive integer that is not a perfect cube. Define real numbers $a,b,c$ by \[a=\root3\of n\kern1.5pt,\qquad b={1\over a-[a]}\kern1pt,\qquad c={1\over b-[b]}\kern1.5pt,\] where $[x]$ denotes the integer part of $x$. Prove that there are infinitely many such integers $n$ with the property that there exist integers $r,s,t$, not all zero, such that $ra+sb+tc=0$.


Attachments: