a) Prove that for any natural number $ n\ge 1, $ there is a set $ \mathcal{M} $ of $ n $ points from the Cartesian plane such that the barycenter of every subset of $ \mathcal{M} $ has integral coordinates (both coordinates are integer numbers). b) Show that if a set $ \mathcal{N} $ formed by an infinite number of points from the Cartesian plane is given such that no three of them are collinear, then there exists a finite subset of $ \mathcal{N} , $ the barycenter of which has non-integral coordinates.
Problem
Source: Romanian TST 1978, Day 3, P7
Tags: analytic geometry, linear algebra, geometry, barycenter