Let $ABC$ be a triangle such that $\angle BAC = 90^{\circ}$ and $AB = AC$. Let $M$ be the midpoint of $BC$. A point $D \neq A$ is chosen on the semicircle with diameter $BC$ that contains $A$. The circumcircle of triangle $DAM$ cuts lines $DB$ and $DC$ at $E$ and $F$ respectively. Show that $BE = CF$.
Problem
Source: Iberoamerican 2018 Problem 2
Tags: geometry, circumcircle
26.09.2018 19:07
Let $N$ be the second intersection of $\odot{(ADM)}$ and $BC$. Since $\angle{NDA}=\angle{AMN}=\angle{BDC}=90^{\circ},$ we have $$\angle{BDN}=\angle{CDA}=\angle{CBA}=45^{\circ}\implies \angle{BDN}=\angle{NDC}=45^{\circ}.$$So by the angle bisector theorem we have $\dfrac{BD}{CD}=\dfrac{BN}{CN}$. By power of a point we get $$BE=\dfrac{BN\cdot BM}{BD}=\dfrac{CN\cdot CM}{CD}=CF,$$as desired.
27.12.2019 08:50
Easy for a #2. The point $M$ was redundant and this infact holds for any point $M$ on $BC$. [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(8cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -15.24, xmax = 15.24, ymin = -9.55, ymax = 10.01; /* image dimensions */ pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); /* draw figures */ draw(circle((-2.16,1.43), 6.020830507496453), linewidth(1.2)); draw((-8.18,1.33)--(3.86,1.53), linewidth(1.2) + dtsfsf); draw((3.86,1.53)--(-2.26,7.45), linewidth(1.2) + dtsfsf); draw((-2.26,7.45)--(-8.18,1.33), linewidth(1.2) + dtsfsf); draw(circle((-1.3918694638253146,4.453590208242104), 3.1196349574880617), linewidth(1.2)); draw((0.8011476943889559,6.672328140436743)--(-8.18,1.33), linewidth(1.2)); draw((0.8011476943889559,6.672328140436743)--(3.86,1.53), linewidth(1.2)); draw((-2.26,7.45)--(-4.38827925558321,3.5854596720674197), linewidth(1.2)); draw((-2.26,7.45)--(1.6045403279325856,5.321720744416781), linewidth(1.2)); /* dots and labels */ dot((-8.18,1.33),dotstyle); label("$B$", (-8.1,1.53), NE * labelscalefactor); dot((3.86,1.53),linewidth(4pt) + dotstyle); label("$C$", (3.94,1.69), NE * labelscalefactor); dot((-2.26,7.45),linewidth(4pt) + dotstyle); label("A", (-2.18,7.61), NE * labelscalefactor); dot((-2.16,1.43),linewidth(4pt) + dotstyle); label("$M$", (-2.08,1.59), NE * labelscalefactor); dot((0.8011476943889559,6.672328140436743),dotstyle); label("D", (0.88,6.87), NE * labelscalefactor); dot((-4.38827925558321,3.5854596720674197),linewidth(4pt) + dotstyle); label("E", (-4.3,3.75), NE * labelscalefactor); dot((1.6045403279325856,5.321720744416781),linewidth(4pt) + dotstyle); label("F", (1.68,5.49), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] Note that there exists a spiral similiarity centred at $A$ such that $BE \mapsto FC$. Note that under this spiral similiarity we also have $EF \mapsto BC \implies AE=AF \implies BE=CF$ by the previous spiral similiarity as desired.$\blacksquare$.
27.12.2019 19:19
Just notice that AB=AC,angleABD=angleACD and angleAFD=angleAED so angle CAF=angle BAF. Hence the triangles BAF and AFC are congruent and the result follows.
28.12.2019 09:49
Easy angle chasing shows that triangles BEM and MFC are equal ,so BE=FC
27.07.2021 21:15
mehhhhhhhhhhhhhhhhhhhhhhhhhhhhhh My solution was pretty big but it was nice though Here, let $X=(DAM)$. Let $AB$ touch $X$ in $G$, and $AC$ touch $X$ in $H$. First, notice that: $BG/BD=BE/BA=BE/CA$ and we want $BE/AC=CF/CA=CH/CD$, hence we need $CH/CD=BG/BD$. So that means we also need to prove there's a spiral similarity $\phi: BG \to CH$ $(i)$, and call $\angle MBD=a$. So, as the triangle is isosceles and because of cyclic quads we have $\angle FCA=45+a$, $\angle AMD=90+2a=180-\angle DHA=180-\angle DHC=90-2a$, proving $DH=CH$! So to prove $(i)$, we just need $GD=GB$. In other words, we just need $\angle ADG=a$, so the quadrilateral $ADHG$ must be an isosceles trapezoid. Now we focus on proving $\angle GDF=45-a$ $(ii)$. Thus, one may notice $MH$ is the perpendicular bisector of $CD$ (it is easy to see because $MD=MC$ and $HD=HC$). Then $\angle AFC=90-2a=2(\angle MHA)$. So $FA=FC$, and then $\angle HAG=90=\angle FAH+\angle FAG=45+a + \angle FAG$. Finally, $\angle GAF=45-a$, proving $(ii)$.
02.10.2021 21:18
We use directed angles$\mod 180^\circ$. Then, the cyclic quads give \begin{align*} \measuredangle ABE = \measuredangle ABD = \measuredangle ACD = \measuredangle ACF \\ \measuredangle BEA = \measuredangle DEA = \measuredangle DFA = \measuredangle CFA, \end{align*}implying $\triangle EAB\stackrel+\sim\triangle FAC$. Since $AB=AC$, the triangles are in fact congruent, so $BE=CF$. $\blacksquare$ Remark: A lot of things about this problem are unnecessary. Indeed, $\triangle ABC$ need not be right and $M$ need not be the midpoint of $\overline{BC}$. The following generalization holds and is proven in the exact same way as above: Let $ABC$ be a triangle with $AB=AC$ and circumcircle $\Gamma$. Let $D$ be a point on arc $\widehat{BC}$ of $\Gamma$ containing $A$ and $\omega$ be any circle passing through $A$ and $D$. If lines $\overline{DB}$ and $\overline{DC}$ meet $\omega$ again at $E$ and $F$ respectively, prove that $BE=CF$.
03.10.2021 18:44
03.10.2021 18:46
trying_to_solve_br wrote: mehhhhhhhhhhhhhhhhhhhhhhhhhhhhhh My solution was pretty big ... Are you sure about that?