Problem

Source: Bosnia and Herzegovina EGMO Team Selection Test 2017

Tags: triplets, equality, Inequality, algebra



Let $a$, $b$, $c$, $d$ and $e$ be distinct positive real numbers such that $a^2+b^2+c^2+d^2+e^2=ab+ac+ad+ae+bc+bd+be+cd+ce+de$ $a)$ Prove that among these $5$ numbers there exists triplet such that they cannot be sides of a triangle $b)$ Prove that, for $a)$, there exists at least $6$ different triplets