Let $a$ be a real number, such that $a\ne 0, a\ne 1, a\ne -1$ and $m,n,p,q$ be natural numbers . Prove that if $a^m+a^n=a^p+a^q$ and $a^{3m}+a^{3n}=a^{3p}+a^{3q}$ , then $m \cdot n = p \cdot q$.
Problem
Source: Lusophon 2015 CPLP P4
Tags: algebra, system of equations
PennyLane_31
21.05.2023 04:06
Lemma: If $a\in \mathbb{R}, a\neq 0, a\neq 1, a\neq -1; m, n, p, q \in \mathbb{N}; a^m+a^n= a^p+a^q (*); a^{3m}+a^{3n}= a^{3p}+a^{3q}(**)\implies m+n= p+q$ and also $a^{xm}+a^{xn}= a^{xp}+a^{xq}$ $\forall x\in \mathbb{N}$ (1)
Proof: Click to reveal hidden textAt the beginning, we have, from $(**) a^{3m}+a^{3n}= a^{3p}+a^{3q}$. So, let's rewrite (**) as $(a^m)^3+ (a^n)^3= (a^p)^3+(a^q)^3\implies (a^m+a^n)(a^{2m}-a^{m+n}+a^{2n})= (a^p+a^q)(a^{2p}-a^{p+q}+a^{2q})$.
From $(*)\implies a^m+a^n= a^p+a^q$, and as $a\neq 0, a\neq 1, a\neq -1$, (*) can't be zero, so we will have:
$\cancel{(a^m+a^n)}(a^{2m}-a^{m+n}+a^{2n})=\cancel{(a^p+a^q)}(a^{2p}-a^{p+q}+a^{2q})$
$\implies a^{2m}-a^{m+n}+a^{2n}= a^{2p}-a^{p+q}+a^{2q}\implies (a^m+a^n)^2-3a^{m+n}= (a^p+a^q)^2-3a^{p+q}$.
Again, we can cut in both sides $(a^m+a^n)$ and $(a^p+a^q)\implies \cancel{-3a}^{m+n}= \cancel{-3a}^{p+q}\implies
a^{m+n}= a^{p+q}$ (2).
As $a\neq 0, a\neq -1, a\ne 1)\implies$ doesn't have a "period" for his powers, it means it's strictly increasing or decreasing. So, if $w>k\implies a^w>a^k$ (if $a$ is positive or $a$ is negative and $w$ is even) or $a^w<a^k$( if $a$ is negative and $w$ is odd).
Now, as we guaranteed this, from (2), we have $m+n= p+q$ (we prove the first part of the lemma).
For the second part, we can do induction in $x$. For initial cases, consider (*) and (**). Suppose that the property (1) is valid for $1, 2, ..., k, \in \mathbb{N}$. Let's prove for $(k+1)$.
According to the supposition, we know that $a^{km}+a^{kn}= a^{kp}+a^{kq}$. By (*) $\implies (a^m+a^n) (a^{km}+a^{kn})= (a^{kp}+a^{kq}) (a^p+a^q)$
$\implies (a^{km+m}+a^{km+n})+ (a^{kn+n}+a^{kn+m})= (a^{kp+p}+a^{kp+q})+ (a^{kq+q}+a^{kq+p})$
$\implies a^{(k+1)m}+a^{km+n}+a^{(k+1)n}+a^{kn+m}= a^{(k+1)p}+a^{kp+q}+a^{(k+1)q}+a^{kq+p}$
$\implies a^{(k+1)m}+a^{(k+1)n}+a^{m+n}(a^{(k-1)m}+a^{(k-1)n})= a^{(k+1)p}+a^{(k+1)q}+a^{p+q}(a^{(k-1)p}+a^{(k-1)q})$(3)
But we can see that, by (2) $a^{m+n}= a^{p+q}$ and by the supposition we know that is valid
$(a^{(k-1)m}+a^{(k-1)n})=(a^{(k-1)p}+a^{(k-1)q})
\implies a^{m+n}(a^{(k-1)m}+a^{(k-1)n})=a^{p+q}(a^{(k-1)p}+a^{(k-1)q})$.
So, by (3), $a^{(k+1)m}+a^{(k+1)n}+\cancel{a^{m+n}(a^{(k-1)m}+a^{(k-1)n})}= a^{(k+1)p}+a^{(k+1)q}+\cancel{a^{p+q}(a^{(k-1)p}+a^{(k-1)q})}$
$\implies a^{(k+1)m}+a^{(k+1)n}= a^{(k+1)p}+a^{(k+1)q}$, as we wanted.
And the result follows by induction. Therefore, for every $x\in \mathbb{N}, a^{xm}+a^{xn}= a^{xp}+a^{xq}$.
By the lemma, we can put $x= p+q $, for LHS and $x= m+n $, for RHS. So, we now have
$a^{(p+q)m}+a^{(p+q)n}= a^{(m+n)p}+a^{(m+n)q}$
$\implies a^{pm+qm}+a^{pn+qn}= a^{pm+pn}+a^{qm+qn}$
$\implies a^{pm+qm}-a^{pm+pn}+a^{pn+qn}-a^{qm+qn}=0$
$\implies (a^{qm}-a^{pn})(a^{pm}-a^{qn})=0$
As the product is 0, we know that $(a^{qm}-a^{pn})$ or $(a^{pm}-a^{qn})$ is zero. Let's do one case (the other one is similar)
Case 1: $(a^{qm}-a^{pn})=0$
As we see before in the proof of the Lemma, we must have $qm= pn$. We also know that $m+n= p+q\implies m-q= p-n$( if $m= q\implies p=n\implies m\cdot n= q\cdot p= p\cdot q$ and the problem would finish)
$\implies (m-q)^2= (p-n)^2$
$\implies m^2-\cancel{2mq}+q^2= p^2-\cancel{2pn}+n^2$
$\implies m^2-n^2= p^2-q^2$
$\implies (m-n)(m+n)= (p+q)(p-q)$
Let's separate now into two subcases:
Case 1.1 $m=n\implies p=q$.
By (*), we would have: $\cancel{2}a^m= \cancel{2}a^p\implies a^m= a^p \implies m=p \implies m=n=p=q\implies m\cdot n= m^2= p\cdot q$ Here, the problem is finish.
Case 1.2 If $m\neq n$ and $p\neq q$
$\implies (m-n)\neq 0, (p-q)\neq 0$. As $(m+n)$ and $(p+q)$ are both $>0$ and $m+n= p+q$, we will have
$(m-n)\cancel{(m+n)}= \cancel{(p+q)}(p-q)\implies m-n= p-q$. We now have the following system:
So $\begin{cases} m+n= p+q (4) \\ m-n= p-q (5)\end{cases}$
Summing (4) and (5), $2m= 2p\implies m= p$. In (*), let's check: $\cancel{a^m}+a^n= \cancel{a^m}+a^q\implies a^n= a^q \Leftrightarrow n=q\therefore m\cdot n= p\cdot q$, as we wanted.
YLG_123
21.05.2023 08:10
$a^m+a^n=a^p+a^q \implies (a^m+a^n)^3 = (a^p+a^q)^3 \implies a^{3m} + a^{3n} + 3a^{m+n}(a^m+a^n) = a^{3p} + a^{3q} + 3a^{p+q}(a^p+a^q)$ $\implies a^{m+n}(a^m+a^n) = a^{p+q}(a^p+a^q) \implies a^{m+n} = a^{p+q}$, as $a \neq 0, -1 \implies m+n = p+q$, as $a \neq 0, 1, -1$. $a^m+a^n=a^p+a^q \implies a^{m} + a^{n} = a^{p} + a^{m+n-p} \implies a^m - a^p = a^{m+n-p} - a^n \implies a^p(a^{m-p} - 1) = a^n(a^{m-p} - 1) \implies a^p = a^n$ or $m = p \implies n = p$ or $m = p$. Therefore, $n = p$ and $m = q$ or $m = p$ and $n = q \implies m\cdot n = p \cdot q$. $_\blacksquare$