Let $ABC$ be a triangle inscribed in a circle and let \[ l_a = \frac{m_a}{M_a} \ , \ \ l_b = \frac{m_b}{M_b} \ , \ \ l_c = \frac{m_c}{M_c} \ , \] where $m_a$,$m_b$, $m_c$ are the lengths of the angle bisectors (internal to the triangle) and $M_a$, $M_b$, $M_c$ are the lengths of the angle bisectors extended until they meet the circle. Prove that \[ \frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C} \geq 3 \] and that equality holds iff $ABC$ is an equilateral triangle.
Problem
Source: 1997 APMO
Tags: trigonometry, geometry, circumcircle, inequalities, ratio, angle bisector, geometric inequality
01.01.2005 22:58
One solution can be found on Kalva's site http://www.kalva.demon.co.uk/apmo/asoln/asol973.html , but since you are asking for "another" solution, here is my one: If the angle bisectors of the angles CAB, ABC and BCA meet the sides BC, CA, AB of triangle ABC at the points X, Y, Z and the circumcircle of triangle ABC at the points X', Y', Z' (apart from the points A, B, C, respectively), then you define $l_a=\frac{AX}{AX^{\prime}}$, $l_b=\frac{BY}{BY^{\prime}}$ and $l_c=\frac{CZ}{CZ^{\prime}}$ and ask for the proof of the inequality $\frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C} \geq 3$. In fact, I begin with: Lemma 1. We have $AX\cdot AX^{\prime} = bc$.
Lemma 2. We have $l_a = 1-\left(\frac{a}{b+c}\right)^2$.
Lemma 3. For any triangle ABC with sidelengths a, b, c and circumradius R, we have the inequality $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2} \geq \frac{1}{R^2}$, with equality if and only if the triangle ABC is equilateral.
Lemma 4. For any three positive numbers a, b, c, we have the inequality $\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}+\frac{1}{\left(a+b\right)^2} \leq \frac14 \left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)$.
Lemma 5. For any triangle ABC with sidelengths a, b, c and circumradius R, we have the inequality $\frac{1}{a^2}-\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}-\frac{1}{\left(c+a\right)^2}+\frac{1}{c^2}-\frac{1}{\left(a+b\right)^2} \geq \frac{3}{4R^2}$, with equality if and only if the triangle ABC is equilateral.
We can extend our problem: If D, E, F are any three points on the segments BC, CA, AB, and the lines AD, BE and CF intersect the circumcircle of triangle ABC at the points D', E', F', respectively, then, denoting $w_a=\frac{AD}{AD^{\prime}}$, $w_b=\frac{BE}{BE^{\prime}}$ and $w_c=\frac{CF}{CF^{\prime}}$, we have the inequality $\frac{w_a}{\sin^2 A} + \frac{w_b}{\sin^2 B} + \frac{w_c}{\sin^2 C} \geq 3$. Equality holds if and only if the triangle ABC is equilateral and the points D, E, F are the midpoints of its sides BC, CA, AB. This extended version of the problem, of course, yields the original problem in the case when D = X, E = Y and F = Z.
Darij
06.07.2008 09:12
27.02.2013 09:00
This following nice solution is due to a very close friend of mine:
27.03.2014 21:30
$\dfrac{l_a}{sin^2A}=\dfrac{4b^2c^2}{(b+c)^2(c+a-b)(a+b-c)}$. By $CS$: $2(\sum ab)^2\geq 3(2\sum a^2b^2+\sum a^2bc-\sum a^4) \Leftrightarrow \sum a^2bc+3\sum a^4\geq 4\sum a^2b^2$. Does anybody know to finish this?
04.03.2016 03:54
TheBernuli wrote: $\dfrac{l_a}{sin^2A}=\dfrac{4b^2c^2}{(b+c)^2(c+a-b)(a+b-c)}$. By $CS$: $2(\sum ab)^2\geq 3(2\sum a^2b^2+\sum a^2bc-\sum a^4) \Leftrightarrow \sum a^2bc+3\sum a^4\geq 4\sum a^2b^2$. Does anybody know to finish this? It can be proved by Schur inequality.
04.03.2016 04:24
How about the law of sines?
19.01.2022 11:00
Diagram attached for convenience By some trivial angle chasing, we get $\angle DBC= \angle DAC = \angle BCD= \delta$ Sine rule in $\triangle ABD \Longrightarrow $ $ \frac{M_a}{\sin 2\alpha + \delta}=\frac{c}{\sin2(\alpha + \delta)} \Longleftrightarrow \frac{M_a}{c}=\frac{\sin 2\alpha + \delta}{\sin2(\alpha + \delta)} $ Sine rule in $\triangle ABP \Longrightarrow $ $ \frac{m_a}{\sin 2\alpha }=\frac{c}{\sin2\alpha + \delta} \Longleftrightarrow \frac{m_a}{c}=\frac{\sin 2\alpha }{\sin2\alpha + \delta} $ Equation 2 $\div$ Equation 1 gives $\dashrightarrow$ $ \frac{m_a}{M_a}= \frac{\sin 2\alpha}{\sin2\alpha + \delta} \div \frac{\sin 2\alpha + \delta}{\sin2(\alpha + \delta)}$ $ \Rightarrow l_a=\frac{\sin 2(\alpha + \delta)}{\sin2\alpha + \delta} \times \frac{\sin 2\alpha}{\sin2\alpha + \delta} $ $ \Rightarrow l_a= \frac{\sin B \times \sin C}{\sin^2 \frac{A}{2}+B}$ Similarly, $ l_b= \frac{\sin C \times \sin A}{\sin^2 \frac{B}{2}+C}$ and $ l_c= \frac{\sin A \times \sin B}{\sin^2 \frac{C}{2}+A}$ $ \frac{l_A}{\sin^2A}+\frac{l_B}{\sin^2B}+\frac{l_C}{\sin^2C}=\frac{\sin B\sin C}{\sin^2A \times \sin^2(\frac{A}{2}+B)}+\frac{\sin C\sin A}{\sin^2B \times \sin^2(\frac{B}{2}+C)}+\frac{\sin A\sin B}{\sin^2C \times \sin^2(\frac{C}{2}+A)} $ Now, it's time for some magic We know that $ 0<\sin^2(\frac{C}{2}+A)\leq1$ $ \Rightarrow 0<1 \leq \frac{1}{\sin^2(\frac{C}{2}+A)}$ Applying similar logic for $\sin^2(\frac{B}{2}+C)$ and $\sin^2(\frac{A}{2}+B)$, we can conclude the following $\dashrightarrow$ $ \frac{l_A}{\sin^2A}+\frac{l_B}{\sin^2B}+\frac{l_C}{\sin^2C}\ge\frac{\sin B\sin C}{\sin^2A}+\frac{\sin C\sin A}{\sin^2B}+\frac{\sin A\sin B}{\sin^2C}$ Using AM-GM inequality, we get : $\frac{l_a}{\sin^2A}+\frac{l_b}{\sin^2B}+\frac{l_c}{\sin^2C}$ $\ge 3 \times$$$ \sqrt[3]{ \frac{\sin B\times \sin C\times \sin C\times \sin A\times \sin A\times \sin B}{\sin^2B\times \sin^2C\times \sin^2a}}$$$\Longleftrightarrow \frac{\sin B\sin C}{\sin^2A}+\frac{\sin C\sin A}{\sin^2B}+\frac{\sin A\sin B}{\sin^2C} \ge 3$ Hence Proved For the second part, equality holds iff $ \sin(C/2+A)=$ \sin^2(A/2+B)=$ \sin^2(B/2+C)=1$, which can be easily proved and solved
Attachments:

19.01.2022 16:52
BrainiacVR wrote: Diagram attached for convenience By some trivial angle chasing, we get $\angle DBC= \angle DAC = \angle BCD= \delta$ Sine rule in $\triangle ABD \Longrightarrow $ $ \frac{M_a}{\sin 2\alpha + \delta}=\frac{c}{\sin2(\alpha + \delta)} \Longleftrightarrow \frac{M_a}{c}=\frac{\sin 2\alpha + \delta}{\sin2(\alpha + \delta)} $ Sine rule in $\triangle ABP$ $ \frac{m_a}{\sin 2\alpha }=\frac{c}{\sin2\alpha + \delta} \Longleftrightarrow \frac{m_a}{c}=\frac{\sin 2\alpha }{\sin2\alpha + \delta} $ Equation 2 $\div$ Equation 1 gives $\dashrightarrow$ $ \frac{m_a}{M_a}= \frac{\sin 2\alpha}{\sin2\alpha + \delta} \div \frac{\sin 2\alpha + \delta}{\sin2(\alpha + \delta)}$ $ \Rightarrow l_a=\frac{\sin 2(\alpha + \delta)}{\sin2\alpha + \delta} \times \frac{\sin 2\alpha}{\sin2\alpha + \delta} $ $ \Rightarrow l_a=\frac{\sin 2(\alpha + \delta)}{\sin2\alpha + \delta} \times \frac{\sin 2\alpha}{\sin2\alpha + \delta} $ $ \Rightarrow l_a= \frac{\sin B \times \sin C}{\sin^2 \frac{A}{2}+B}$ Similarly, $ l_b= \frac{\sin C \times \sin A}{\sin^2 \frac{B}{2}+C}$ and $ l_c= \frac{\sin A \times \sin B}{\sin^2 \frac{C}{2}+A}$ $ \frac{l_A}{\sin^2A}+\frac{l_B}{\sin^2B}+\frac{l_C}{\sin^2C}=\frac{\sin B\sin C}{\sin^2A \times \sin^2(\frac{A}{2}+B)}+\frac{\sin C\sin A}{\sin^2B \times \sin^2(\frac{B}{2}+C)}+\frac{\sin A\sin B}{\sin^2C \times \sin^2(\frac{C}{2}+A)} $ Now, it's time for some magic We know that $ 0<\sin^2(\frac{C}{2}+A)\leq1$ $ \Rightarrow 0<1 \leq \frac{1}{\sin^2(\frac{C}{2}+A)}$ Applying similar logic for $\sin^2(\frac{B}{2}+C)$ and $\sin^2(\frac{A}{2}+B)$, we can conclude the following $\dashrightarrow$ $ \frac{l_A}{\sin^2A}+\frac{l_B}{\sin^2B}+\frac{l_C}{\sin^2C}\ge\frac{\sin B\sin C}{\sin^2A}+\frac{\sin C\sin A}{\sin^2B}+\frac{\sin A\sin B}{\sin^2C}$ Using AM-GM inequality, we get : $\frac{l_a}{\sin^2A}+\frac{l_b}{\sin^2B}+\frac{l_c}{\sin^2C}$ $\ge 3 \times$$$ \sqrt[3]{ \frac{\sin B\times \sin C\times \sin C\times \sin A\times \sin A\times \sin B}{\sin^2B\times \sin^2C\times \sin^2a}}$$$\Longleftrightarrow \frac{\sin B\sin C}{\sin^2A}+\frac{\sin C\sin A}{\sin^2B}+\frac{\sin A\sin B}{\sin^2C} \ge 3$ Hence Proved For the second part, equality holds iff $ \sin(C/2+A)=$ \sin^2(A/2+B)=$ \sin^2(B/2+C)=1$, which can be easily proved and solved
beautiful solution!