Problem

Source: Iranian National Olympiad (3rd Round) 2007

Tags: modular arithmetic, abstract algebra, group theory, number theory, number theory proposed



A hyper-primitive root is a k-tuple $ (a_{1},a_{2},\dots,a_{k})$ and $ (m_{1},m_{2},\dots,m_{k})$ with the following property: For each $ a\in\mathbb N$, that $ (a,m) = 1$, has a unique representation in the following form: \[ a\equiv a_{1}^{\alpha_{1}}a_{2}^{\alpha_{2}}\dots a_{k}^{\alpha_{k}}\pmod{m}\qquad 1\leq\alpha_{i}\leq m_{i}\] Prove that for each $ m$ we have a hyper-primitive root.