Triangle $ABC$ satisfies $\angle C=90^{\circ}$. A circle passing $A,B$ meets segment $AC$ at $G(\neq A,C)$ and it meets segment $BC$ at point $D(\neq B)$. Segment $AD$ cuts segment $BG$ at $H$, and let $l$, the perpendicular bisector of segment $AD$, cuts the perpendicular bisector of segment $AB$ at point $E$. A line passing $D$ is perpendicular to $DE$ and cuts $l$ at point $F$. If the circumcircle of triangle $CFH$ cuts $AC$, $BC$ at $P(\neq C),Q(\neq C)$ respectively, then prove that $PQ$ is perpendicular to $FH$.
Problem
Source: FKMO 2018 Day 2 Problem 4
Tags: geometry, perpendicular bisector
25.03.2018 09:27
Basically all we need to show is that $\angle ACF = \angle ACH$, which can be done using harmonic pencils and La Hire.
25.03.2018 10:33
I used coordinates, which is not that hard.
25.03.2018 14:27
Easy to show $PQ\perp FH \Leftrightarrow \angle ACF=\angle ACH$ we can prove this by Pascal theorem and using Appolonius circle
25.03.2018 17:13
Can someone post a full solution, please? I can't seem to find a solution. Edit: Nvm, I just angle chased my way through and got a fairly simple solution.
25.03.2018 17:27
Let $CH$ and $DF$ cuts in $X$ and $CA$ and $DF$ cuts in $Y$. Let $AD$ and $CF$ cuts in $R$ .It is easy to see that $DF$ and $FA$ are tangents to $(BDGA)$. We have $AD$ the polar of point $F$ , since $H$ is on $AD$ , $H$ is on polar of point $F$.So $F$ is on polar of point $H$.Let $DG$ cuts $AB$ in $T$ . By Brocard theorem $TC$ is polar of point $H$.So $T,C,F$ are collinear .We have $(T, S ,B,A)=-1$ , where $S$ is the intersection between $CH$ and $AB$. $(T,S,B,A)$=$(R,H,D,A)$=$(F,X,D,Y)=-1$.Then we have $CA$ the bisector of angle $HCF$.
26.03.2018 00:17
lminsl wrote: Triangle $ABC$ satisfies $\angle C=90^{\circ}$. A circle passing $A,B$ meets segment $AC$ at $G(\neq A,C)$ and it meets segment $BC$ at point $D(\neq B)$. Segment $AD$ cuts segment $BG$ at $H$, and let $l$, the perpendicular bisector of segment $AD$, cuts the perpendicular bisector of segment $AB$ at point $E$. A line passing $D$ is perpendicular to $DE$ and cuts $l$ at point $F$. If the circumcircle of triangle $CFH$ cuts $AC$, $BC$ at $P(\neq C),Q(\neq C)$ respectively, then prove that $PQ$ is perpendicular to $FH$. Observe that $F=\overline{AA} \cap \overline{DD}$ for circle $\odot(AGDB)$. Define $F'=\overline{GG} \cap \overline{BB}$. Claim: Points $C,F,F'$ are collinear and lines $\overline{CF}, \overline{GD}, \overline{AB}$ concur. (Proof) Follows from a homography making $AGDB$ a rectangle with the same circumcircle. $\blacksquare$ Hence $(CF, CH, CA, CB)=-1 \implies (CF, CH, CP, CQ)=-1 \implies PFQH$ is harmonic. Hence $\overline{PQ} \perp \overline{FH}$.
26.03.2018 04:18
We can use Analytical geometry to prove this problem too.
14.08.2018 17:36
just use pascal and blanchet’s thm
03.01.2019 11:24
We first of all remove unnecessary points (like $E$), and restate the problem a bit by using $\angle PCQ=90^{\circ}$ as follows:- Restated Problem wrote: Let $\triangle ABC$ be a right-angled triangle with $\angle ACB=90^{\circ}$. $D,E$ are points on $BC,AC$ respectively such that $A,B,D,E$ lie on circle $\omega$. Suppose the tangents to $\omega$ at $A$ and $D$ meet at $F$, and let $AD \cap BE=H$. Also let $\odot (CFH) \cap AC,BC=P,Q$. Then show that $PQ$ is the perpendicular bisector of $FH$. Note that by Pascal on $AAGDDB$ and $ABBDGG$, we get that the tangents to $\omega$ at $B$ and $G$ also meet on $CF$, thus giving that $CF$ is the polar of $H$ wrt $\omega$. Let $CF \cap BG=T$. Then $$-1=(B,G;H,T) \overset{C}{=} (Q,P;H,F) \Rightarrow FPHQ \text{ is a harmonic quadrilateral} \Rightarrow PQ \text{ is the perpendicular bisector of } FH$$
08.06.2019 21:10
By angle chasing, it suffices to prove that $\angle ACH = \angle ACF$ As $\angle GCD = 90$, we only need to prove that $(F, H; CA \cap HF, CD \cap HF) = -1$. Let $X$ lie on $\odot(AGD)$ such that $XDGA$ is a harmonic quadrilateral. Taking perspectivity at $A$ projecting from $\odot(AGD)$ onto line $HF$, we only need to prove that $AX, CD, HF$ concur. Pascal's in $DDBBAX$ shows that this is equivalent to proving $BA, XD, HF$ concur. Pascal's in $GXDAAB$ proves this, and we're done.
01.10.2020 16:09
[asy][asy] size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -19.340939067407902, xmax = 25.156924850244728, ymin = -14.524974714410353, ymax = 23.27428603284296; /* image dimensions */pen fuqqzz = rgb(0.9568627450980393,0,0.6); pen zzttff = rgb(0.6,0.2,1); pen qqwuqq = rgb(0,0.39215686274509803,0); draw(arc((-5.1965725999423125,-5.609279795531715),1.1961791375713073,89.76566274013781,114.64556356558367)--(-5.1965725999423125,-5.609279795531715)--cycle, linewidth(2) + qqwuqq); draw(arc((-5.1965725999423125,-5.609279795531715),1.1961791375713073,64.88576191469195,89.76566274013781)--(-5.1965725999423125,-5.609279795531715)--cycle, linewidth(2) + qqwuqq); /* draw figures */draw((-5.146279968228396,6.687268658520839)--(10.443921458117645,-5.6732490963826745), linewidth(0.8)); draw((-5.146279968228396,6.687268658520839)--(-5.1965725999423125,-5.609279795531715), linewidth(0.8)); draw((-5.1965725999423125,-5.609279795531715)--(10.443921458117645,-5.6732490963826745), linewidth(0.8)); draw(circle((5.785098343128094,4.4627663645843585), 11.155422100562744), linewidth(0.8) + blue); draw((-5.146279968228396,6.687268658520839)--(1.0435202855071504,-5.6348016478239416), linewidth(0.8) + fuqqzz); draw((-5.164110289024837,2.3277552237910673)--(10.443921458117645,-5.6732490963826745), linewidth(0.8) + fuqqzz); draw(circle((-3.3960254166422086,-2.5423806682496792), 3.556380240667926), linewidth(0.8) + zzttff); draw((-5.171425672308522,0.5391440109299701)--(-1.6206251609758926,-5.623905347429328), linewidth(0.8)); draw((-6.895182537546205,-1.9069753964426959)--(-5.1965725999423125,-5.609279795531715), linewidth(0.8)); draw((-2.190662002088734,0.8035032889534445)--(-5.1965725999423125,-5.609279795531715), linewidth(0.8)); draw((-6.895182537546205,-1.9069753964426959)--(-14.092371541067159,13.780077833917309), linewidth(0.8) + linetype("2 2") + qqwuqq); draw((1.0435202855071504,-5.6348016478239416)--(-14.092371541067159,13.780077833917309), linewidth(0.8) + linetype("2 2") + qqwuqq); draw((-5.146279968228396,6.687268658520839)--(-14.092371541067159,13.780077833917309), linewidth(0.8) + linetype("2 2") + qqwuqq); /* dots and labels */dot((-5.146279968228396,6.687268658520839),dotstyle); label("$A$", (-6.182968554123521,6.947396020601787), NE * labelscalefactor); dot((10.443921458117645,-5.6732490963826745),dotstyle); label("$B$", (11.201501578579476,-6.6301924064397255), NE * labelscalefactor); dot((-5.1965725999423125,-5.609279795531715),linewidth(4pt) + dotstyle); label("$C$", (-6.103223278285434,-6.829555596034943), NE * labelscalefactor); dot((1.0435202855071504,-5.6348016478239416),dotstyle); label("$D$", (0.6751251679519739,-6.829555596034943), NE * labelscalefactor); dot((-6.895182537546205,-1.9069753964426959),linewidth(4pt) + dotstyle); label("$F$", (-8.216473087994743,-2.1245843215878004), NE * labelscalefactor); dot((-5.164110289024837,2.3277552237910673),linewidth(4pt) + dotstyle); label("$G$", (-6.701312847071087,2.261405849506993), NE * labelscalefactor); dot((-2.190662002088734,0.8035032889534445),linewidth(4pt) + dotstyle); label("$H$", (-1.677360469271597,1.144971987773773), NE * labelscalefactor); dot((5.785098343128094,4.4627663645843585),linewidth(4pt) + dotstyle); label("$E$", (5.938313373265726,4.773382038406739), NE * labelscalefactor); dot((-5.171425672308522,0.5391440109299701),linewidth(4pt) + dotstyle); label("$P$", (-6.7411854849901305,0.66650033274525), NE * labelscalefactor); dot((-1.6206251609758926,-5.623905347429328),linewidth(4pt) + dotstyle); label("$Q$", (-2.434940589733425,-7.148536699387292), NE * labelscalefactor); dot((-14.092371541067159,13.780077833917309),linewidth(4pt) + dotstyle); label("$I$", (-13.918260310417974,14.103579311462937), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy][/asy] CLAIM. $FC,GD,AB$ are concurrent. Proof. Pascal's theorem on $AGDDBA$. $\blacksquare$ Hence $CF,CA,CH,CB$ are harmonic, from $\angle C=90^{\circ}$ we have $\angle FCP=\angle PCH$, hence $FP=PH$. Since $PQ$ is the diameter of the circle $(CFH)$, $PQ\perp FH$ as desired.