Triangle $ABC$ satisfies $\angle ABC < \angle BCA < \angle CAB < 90^{\circ}$. $O$ is the circumcenter of triangle $ABC$, and $K$ is the reflection of $O$ in $BC$. $D,E$ is the foot of perpendicular line from $K$ to line $AB$, $AC$, respectively. Line $DE$ meets $BC$ at $P$, and a circle with diameter $AK$ meets the circumcircle of triangle $ABC$ at $Q(\neq A)$. If $PQ$ cuts the perpendicular bisector of $BC$ at $S$, then prove that $S$ lies on the circle with diameter $AK$.
Problem
Source: FKMO 2018 Day 1 Problem 2
Tags: geometry, circumcircle
24.03.2018 13:21
I had heard that $K$ could be replaced with any point on the perpendicular bisector of $BC$.
24.03.2018 13:25
I can't geo apparently wow why didn't I just do miquel stuff kill me pls
24.03.2018 14:55
So there WAS a angle chasing solution... Sketch of my complicated solution : 1. Let the Euler reflection point($X_{110}$) of triangle $ABC$ be $X$. Then $Q ,X$ are symmetric WRT line $OK$. 2. Let the Euler line of triangle $ABC$ cuts $BC$ at $J$, and let $J' \in BC$ such that $\overrightarrow{CJ}=-\overrightarrow{BJ'}$. If $T=AK \cap BC$, then $T,K,P,Q$ are concyclic. 3. Chase angles!
24.03.2018 15:46
Since $(C,E,Q,P)$ are concyclic, Chasing angles kills the problem. (Let $L=PQ \cap$ (the circle with diameter $AK$))
24.03.2018 16:01
Let $(PQ$ intersect the circle with diameter $(AK)$ in $X$. We have $\angle QED=\angle QAD=\angle QCB$, so $P,Q,E,C$ are concyclic. But $\angle ECP=C$, so $\angle XQE=\angle SXCE=C$. So it's enough to show that $\angle OKE=\angle C$ if we want $X-O-K$ to be collinear. Let $M$ be the midpoint of $BC$. $\angle KMC=\angle KEC=90$ so $K,M,E,C$ are concyclic. This implies $\angle MCE=\angle MKE=C$. The conclusion follows.
24.03.2018 16:24
Let $PQ$ intersect $(ADE) $ at $N $.Since $Q$ is Miquel point of $BDEC $ we have $CQEP$ is cyclic.Then easy angle chasing yields that $AN\parallel BC$ so done.
24.03.2018 16:27
A nice extension : If we let $T$ be the isogonal conjugate of $K$ wrt $\triangle{ABC}$, then the orthocenter of $\triangle{TBC}$ lies on $KQ$.
24.03.2018 16:32
Wow Iminsl! You solved it so hard.
26.03.2018 00:30
Is $K$ actually important? lminsl wrote: Triangle $ABC$ satisfies $\angle ABC < \angle BCA < \angle CAB < 90^{\circ}$. $O$ is the circumcenter of triangle $ABC$, and $K$ is the reflection of $O$ in $BC$. $D,E$ is the foot of perpendicular line from $K$ to line $AB$, $AC$, respectively. Line $DE$ meets $BC$ at $P$, and a circle with diameter $AK$ meets the circumcircle of triangle $ABC$ at $Q(\neq A)$. If $PQ$ cuts the perpendicular bisector of $BC$ at $S$, then prove that $S$ lies on the circle with diameter $AK$. Note that $Q$ is the spiral center $\overline{DE} \mapsto \overline{BC}$. Now $\angle DQP=\angle DBC$ since $BDQP$ is cyclic. Along with $ADKES$ cyclic we get $\angle DQS=\angle BAS=\angle A+\angle C$ so $\angle DQP+\angle DQS=180^{\circ}$. Thus, $\overline{PQ}$ passes through $S$. Done.
14.08.2018 17:32
lminsl wrote: I had heard that $K$ could be replaced with any point on the perpendicular bisector of $BC$. lminsil, i think thay k can be replaced with any point in the triangle
03.01.2019 10:35
We prove a much more general statement as follows:- Generalisation wrote: Let $D$ and $E$ be points on segments $\overline{AB}$ and $\overline{AC}$ in an acute-angled triangle $\triangle ABC$. Let $\overline{DE} \cap \overline{BC}=P$ and $\odot (ADE) \cap \odot (ABC)=Q$. Suppose $\overline{PQ}$ meets $\odot (ADE)$ at $X$. Then show that $\overline{AX} \parallel \overline{BC}$. Invert about $A$ with radius $\sqrt{AB \cdot AC}$ followed by reflection in the angle bisector of $\angle BAC$. Then we are left with the following equivalent problem- Inverted Problem wrote: Let $D$ and $E$ be points on segments $\overline{AB}$ and $\overline{AC}$ in an acute-angled triangle $\triangle ABC$. Let $\overline{DE} \cap \overline{BC}=P$ and $\odot (ADE) \cap \odot (ABC)=Q$. Suppose $\overline{DE}$ meets $\odot (APQ)$ at $X$. Then show that $\overline{AX}$ is tangent to $\odot (ABC)$. Note that, as $Q$ is the center of spiral similarity that takes $\overline{DE}$ to $\overline{BC}$, so we get that $$\measuredangle QEP=\measuredangle QED=\measuredangle QCB=\measuredangle QCP \Rightarrow CEQP \text{ is cyclic.}$$Using the above, we have $$\measuredangle XAQ=\measuredangle XPQ=\measuredangle EPQ=\measuredangle ECQ=\measuredangle ACQ \Rightarrow AX \text{ is tangent to } \odot (ABC) \text{. } \blacksquare$$
25.03.2019 23:24
Let $SE\cap BC=X.$ After a simple angle chasing one can easily prove that $BDEX$ and $QSBX$ are cyclic quadrilaterals. Knowing this, the desired result follows after applying the radical axes theorem on $(BDEX), $ $(QSBX),$ and $(QSDE).$
08.07.2019 13:57
Let $M$ be the midpoint of $BC.$ Since $Q$ is the Miquel point of $CEDB, CEQP$ is cyclic, and we also know that $ECKM$ is cyclic because $\measuredangle CEK = \measuredangle CMK = 90^\circ.$ As a result, we then get that $\measuredangle EKS = \measuredangle ECP = \measuredangle EQS,$ so $KEQS$ is cyclic as desired. $\blacksquare$
30.09.2020 10:55
[asy][asy] size(10cm); real labelscalefactor = 0.3; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -16.071382758046333, xmax = 28.426481159606293, ymin = -24.134280452899844, ymax = 13.664980294353462; /* image dimensions */pen zzttff = rgb(0.6,0.2,1); pen qqwuqq = rgb(0,0.39215686274509803,0); pen ffvvqq = rgb(1,0.3333333333333333,0); pen ccqqqq = rgb(0.8,0,0); /* draw figures */draw(circle((-2.180289430631394,-4.787697213351989), 9.117239529730186), linewidth(1) + zzttff); draw(circle((-0.48888899749418246,-3.125577193969742), 6.98969052605399), linewidth(1) + zzttff); draw((-1.9285233605802043,3.7142493060688957)--(-2.3307380075640727,-9.868229926693967), linewidth(1) + linetype("2 2") + qqwuqq); draw(circle((11.699838762858787,-4.312787457609136), 6.147826887375305), linewidth(1) + linetype("2 2") + blue); draw((1.3529600125757077,3.6170755387544835)--(-11.007557742327798,-7.068791423549193), linewidth(1) + ffvvqq); draw((-11.007557742327798,-7.068791423549193)--(6.496530304132332,-7.587135716496762), linewidth(1) + ffvvqq); draw((6.496530304132332,-7.587135716496762)--(1.3529600125757077,3.6170755387544835), linewidth(1) + ffvvqq); draw((-1.9285233605802043,3.7142493060688957)--(16.70027444805631,-7.88929670481342), linewidth(1) + ccqqqq); draw((16.70027444805631,-7.88929670481342)--(6.496530304132332,-7.587135716496762), linewidth(1) + ffvvqq); draw((-7.426979470791114,-3.973323756543287)--(16.70027444805631,-7.88929670481342), linewidth(1) + ffvvqq); /* dots and labels */dot((1.3529600125757077,3.6170755387544835),dotstyle); label("$A$", (1.6719411159280564,4.294910383378224), NE * labelscalefactor); dot((-11.007557742327798,-7.068791423549193),dotstyle); label("$B$", (-11.964501052384845,-8.826371544011022), NE * labelscalefactor); dot((6.496530304132332,-7.587135716496762),dotstyle); label("$C$", (6.496530304132329,-9.522550681582329), NE * labelscalefactor); dot((-2.180289430631394,-4.787697213351989),linewidth(4pt) + dotstyle); label("$O$", (-3.2323933481143032,-5.513758544706495), NE * labelscalefactor); dot((-2.3307380075640727,-9.868229926693967),linewidth(4pt) + dotstyle); label("$K$", (-3.1127754343571725,-10.81681938793929), NE * labelscalefactor); dot((-0.48888899749418246,-3.125577193969742),linewidth(4pt) + dotstyle); label("$X$", (-0.3216907800241223,-2.802419166211532), NE * labelscalefactor); dot((6.284896589564527,-1.4017435388380786),linewidth(4pt) + dotstyle); label("$Q$", (7.254110424594156,-1.3670042011259633), NE * labelscalefactor); dot((-1.9285233605802043,3.7142493060688957),linewidth(4pt) + dotstyle); label("$T$", (-2.674176417247693,2.4607690391022197), NE * labelscalefactor); dot((-7.426979470791114,-3.973323756543287),linewidth(4pt) + dotstyle); label("$D$", (-8.83609100175188,-3.799235114187621), NE * labelscalefactor); dot((5.824921049624043,-6.124172921792661),linewidth(4pt) + dotstyle); label("$E$", (4.223789942746845,-5.274522717192234), NE * labelscalefactor); dot((16.70027444805631,-7.88929670481342),linewidth(4pt) + dotstyle); label("$P$", (16.624180335569395,-9.102295957420417), NE * labelscalefactor); dot((-2.255513719097733,-7.327963570022978),linewidth(4pt) + dotstyle); label("$F$", (-3.1925207101952595,-8.02573473360624), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy][/asy] Firstly $Q$ is the miquel point of the quadrilateral $DECB$ and hence $Q,E,C,P$ are concyclic. Let $QP$ meet the circle $(AQED)$ again at $T$ then $\angle ATP=\angle ATQ=\angle AEQ=\angle QPC$, hence $AT\|BC$. Let $TK$ intersect $BC$ at $F$ then from $\angle ATK=90^{\circ}$, $\angle TFB=90^{\circ}$, hence $T,K,O$ are collinear. Therefore, $T=S$ as desired.
06.08.2022 09:38
Clearly, $Q$ is th center of spiral similarity that sends, $DE$ to $BC$. Therefore, $PQEC$ is cyclic. Let, $S' = OK\cap (AQCKD)$. Clearly, $AS'||BC$. Now, $ \measuredangle EQP =\measuredangle ECP =\measuredangle EAS' =\measuredangle EQS' $ So, $P,Q,S'$ are colinear and this implies $S'\equiv S$ and we are done. $\blacksquare$
04.09.2022 23:28
$Q$ is the Miquel Point of $(BCED)$. Then $$\angle QSK = 90^\circ - \angle QPC = 90^\circ - \angle QEA = 90^\circ - \angle QKA = \angle KAQ,$$so $S$ lies on the circle with diameter $\overline{AK}$.
14.02.2023 10:46
rmtf1111 wrote: A nice extension : If we let $T$ be the isogonal conjugate of $K$ wrt $\triangle{ABC}$, then the orthocenter of $\triangle{TBC}$ lies on $KQ$. How to prove this claim?