Points $ A_{1}$, $ B_{1}$, $ C_{1}$ are chosen on the sides $ BC$, $ CA$, $ AB$ of a triangle $ ABC$ respectively. The circumcircles of triangles $ AB_{1}C_{1}$, $ BC_{1}A_{1}$, $ CA_{1}B_{1}$ intersect the circumcircle of triangle $ ABC$ again at points $ A_{2}$, $ B_{2}$, $ C_{2}$ respectively ($ A_{2}\neq A, B_{2}\neq B, C_{2}\neq C$). Points $ A_{3}$, $ B_{3}$, $ C_{3}$ are symmetric to $ A_{1}$, $ B_{1}$, $ C_{1}$ with respect to the midpoints of the sides $ BC$, $ CA$, $ AB$ respectively. Prove that the triangles $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar.
Problem
Source: IMO Shortlist 2006, Geometry 9, AIMO 2007, TST 2, P3
Tags: geometry, circumcircle, IMO Shortlist, geometry solved, reflection, Spiral Similarity, Miquel point
01.07.2007 17:24
This solution was proposed by Yulhee Nam in Korean Team Intensive Training. Define a point $ X$ s.t. a quadrilateral $ CA_{1}XB_{3}$ be a parallelogram. Then $ BXB_{3}A_{3}$ and $ AXA_{1}B_{1}$ be a parallelogram, too. $ \Rightarrow \angle CC_{2}A_{1}=\angle CB_{1}A_{1}=\angle B_{3}AX$ $ \Rightarrow$ Lines $ AX$ and $ C_{2}A_{2}$ meet on the circumcircle of triangle $ ABC$ at $ Q$. $ \Rightarrow \angle CBQ=\angle CC_{2}Q=\angle CAQ=\angle A_{1}XQ$ $ \Rightarrow$ $ BXA_{1}Q$ is cyclic. $ \Rightarrow \angle B_{3}A_{3}C=\angle XBC=\angle XQA_{1}=\angle C_{2}CA$. Therefore, we get following amazing result : $ \angle B_{3}A_{3}C=\angle C_{2}CA$. We can easily prove that $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar by this result. We can also use complex numbers. Because $ C_{2}AB_{1}\sim C_{2}BA_{1}$, $ \frac{c_{2}-b_{1}}{c_{2}-a}=\frac{c_{2}-a_{1}}{c_{2}-b}$. So we can easily express $ a_{2}, b_{2}, c_{2}$ by $ a,b,c,a_{1},b_{1},c_{1}$. Now, with some calculation, we get the result.
02.07.2007 02:22
This one was proposed by Bodo Lass, a mathematician from Lyon in France : $ A_{2}$ is the center of the spiral similarity which maps $ BC_{1}$ on $ CB_{1}$. So we have $ \frac{A_{2}B}{A_{2}C}= \frac{BC_{1}}{CB_{1}}= \frac{AC_{3}}{AB_{3}}$, that is the triangles $ A_{2}BC$ and $ AC_{3}B_{3}$ are similar. Working with angles mod 180° we get $ (A_{2}B_{2},C_{2}B_{2}) = (A_{2}B_{2},BB_{2})+(BB_{2},C_{2}B_{2}) = (A_{2}C,BC)+(BA,C_{2}A) = (AC,C_{3}B_{3})+(A_{3}B_{3},CA) = (A_{3}B_{3},C_{3}B_{3})$, Quite Easily Done Benjamin
02.07.2007 02:33
benjamin wrote: $ A_{2}$ is the center of the spiral similarity which maps $ BC_{1}$ on $ CB_{1}$. So we have $ \frac{A_{2}B}{A_{2}C}= \frac{BC_{1}}{CB_{1}}= \frac{AC_{3}}{AB_{3}}$, that is the triangles $ A_{2}BC$ and $ AC_{3}B_{3}$ are similar. Working with angles mod 180° we get $ (A_{2}B_{2},C_{2}B_{2}) = (A_{2}B_{2},BB_{2})+(BB_{2},C_{2}B_{2}) = (A_{2}C,BC)+(BA,C_{2}A) = (AC,C_{3}B_{3})+(A_{3}B_{3},CA) = (A_{3}B_{3},C_{3}B_{3})$, I think this is more likely what I did too, in fact a "polish" of the official solution. Little Gauss wrote: Define a point $ X$ s.t. a quadrilateral $ CA_{1}XB_{3}$ be a parallelogram. Then $ BXB_{3}A_{3}$ and $ AXA_{1}B_{1}$ be a parallelogram, too. $ \Rightarrow \angle CC_{2}A_{1}=\angle CB_{1}A_{1}=\angle B_{3}AX$ $ \Rightarrow$ Lines $ AX$ and $ C_{2}A_{2}$ meet on the circumcircle of triangle $ ABC$ at $ Q$. $ \Rightarrow \angle CBQ=\angle CC_{2}Q=\angle CAQ=\angle A_{1}XQ$ $ \Rightarrow$ $ BXA_{1}Q$ is cyclic. $ \Rightarrow \angle B_{3}A_{3}C=\angle XBC=\angle XQA_{1}=\angle C_{2}CA$. Therefore, we get following amazing result : $ \angle B_{3}A_{3}C=\angle C_{2}CA$. We can easily prove that $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar by this result. And this solution is really amazing. Congratulations, Yulhee Nam!
02.07.2007 05:20
Little Gauss wrote: This solution was proposed by Yulhee Nam in Korean Team Intensive Training. Define a point $ X$ s.t. a quadrilateral $ CA_{1}XB_{3}$ be a parallelogram. Then $ BXB_{3}A_{3}$ and $ AXA_{1}B_{1}$ be a parallelogram, too. $ \Rightarrow \angle CC_{2}A_{1}=\angle CB_{1}A_{1}=\angle B_{3}AX$ $ \Rightarrow$ Lines $ AX$ and $ C_{2}A_{2}$ meet on the circumcircle of triangle $ ABC$ at $ Q$. $ \Rightarrow \angle CBQ=\angle CC_{2}Q=\angle CAQ=\angle A_{1}XQ$ $ \Rightarrow$ $ BXA_{1}Q$ is cyclic. $ \Rightarrow \angle B_{3}A_{3}C=\angle XBC=\angle XQA_{1}=\angle C_{2}CA$. Therefore, we get following amazing result : $ \angle B_{3}A_{3}C=\angle C_{2}CA$. We can easily prove that $ A_{2}B_{2}C_{2}$ and $ A_{3}B_{3}C_{3}$ are similar by this result. I understand nothing. I don't see $ Q\in (O)$ because $ Q=AX\cap A_{2}C_{2}$ so if $ Q\in (O)$ then $ Q\equiv A_{2}?$ Or I missed some thing?
02.07.2007 13:02
Little Gauss wrote: $ \Rightarrow$ Lines $ AX$ and $ C_{2}A_{2}$ meet on the circumcircle of triangle $ ABC$ at $ Q$. It is only a typo . It should be <<the lines $ AX$ and $ C_{2}A_{1}$ BTW , great solution Yulhee Nam
03.07.2007 11:58
Lemma: Consider a triangle $ ABC$ and points $ A',B',C'$ on $ BC, CA, AB$. The perpendiculars from $ A'$ to $ BC$, $ B'$ to $ AC$ and $ C'$ to $ AB$ intersect in points $ A_{1}, B_{1}, C_{1}$ (correspondingly). The lines $ AA_{1},BB_{1},CC_{1}$ meet the circumcircle of $ ABC$ in $ A_{2},B_{2},C_{2}$. Then $ A_{2}B_{2}C_{2}$ is similar to $ A'B'C'$. Proof: $ m(\angle BAA_{2})=m(\angle C'AA_{1})=m(\angle C'B'A_{1})$ as $ A_{1}B'C'A$ is cyclic. Analogously $ m(\angle BCC_{2})=m(\angle A'CA_{1})=m(\angle A'B'A_{1})$ as $ A_{1}B'C'C$ is cyclic. Therefore $ m(\angle C_{2}B_{2}A_{2})=m(\angle BCC_{2})+m(\angle BAA_{2})=$ $ m(\angle C'B'A_{1})+m(\angle A'B'A_{1})=m(\angle A'B'C')$. So $ m(\angle A_{2}B_{2}C_{2})=m(\angle A'B'C')$. Together with the analogously deduced equalities this means that $ A_{2}B_{2}C_{2}$ and $ ABC$ are similar. Let's return to the problem. Let $ O$ be the circumcircle of $ ABC$. Let $ A', B', C'$ be diametrally opposite to $ A,B,C$. Also pick up $ A_{4}$ be the intersection of the perpendicular from $ B_{2}$ to $ AC$ and $ C_{2}$ to $ AB$, and analogously define $ B_{4}, C_{4}$. $ A_{2}$ is symmetric to $ A$ wrt $ OS$ where $ S$ is the midpoint of $ AA_{4}$ (the circumcenter of $ AB_{2}C_{2}$(, therefore $ A_{2}$ is the intersection of $ A'A_{4}$ with the circumcircle of $ ABC$. If we let the perpendicular from $ B_{3}$ to $ AC$ intersect the perpendicular from $ C_{3}$ to $ AB$ in $ A_{4}'$ then clearly $ A_{4}$ and $ A_{4}'$ are symmetric with respect to $ O$. Finally if we let $ A_{5},B_{5}, C_{5}$ be symmetric to $ A_{3}B_{3}C_{3}$ with respect to $ O$ then the perpendicular from $ B_{5}$ to $ A'C'$ meets the perpendicular from $ C_{5}$ to $ A'B'$ in a point which is symmetric to $ A_{4}'$ with respect to $ O$ (by symmetry), therefore in $ A_{4}$. It remains to apply the lemma for triangle $ A'B'C'$ and points $ A_{5},B_{5},C_{5}$ on its sides, as $ A_{5}B_{5}C_{5}$ is congruent to $ A_{3}B_{3}C_{3}$ by symmetry.
24.07.2007 02:44
We have $ \left\{\begin{array}{c}\widehat{A_{2}BC_{1}}=\widehat{A_{2}CB_{1}}\\ \widehat{A_{2}C_{1}B}=180^\circ-\widehat{A_{2}A_{1}A}=180^\circ-\widehat{A_{2}B_{1}A}=\widehat{A_{2}B_{1}C}\end{array}\right\|$ $ \Rightarrow\triangle A_{2}BC_{1}\sim\triangle A_{2}CB_{1}\Rightarrow\frac{C_{1}B}{B_{1}C}=\frac{A_{2}B}{A_{2}C}\Rightarrow\frac{AC_{3}}{AB_{3}}=\frac{A_{2}B}{A_{2}C}$ $ \Rightarrow\triangle AC_{3}B_{3}\sim\triangle A_{2}BC\Rightarrow\widehat{AC_{3}B_{3}}=\widehat{A_{2}BC}$ Similarly, we also have $ \widehat{BC_{3}A_{3}}=\widehat{B_{2}AC}$ Thus, $ \widehat{A_{3}C_{3}B_{3}}=180^\circ-\widehat{AC_{3}B_{3}}-\widehat{BC_{3}A_{3}}=180^\circ-\widehat{A_{2}BC}-\widehat{B_{2}AC}$ On the other hand, \[ \begin{eqnarray*}\widehat{A_{2}C_{2}B_{2}}&=&\widehat{AC_{2}C}-\widehat{AC_{2}A_{2}}-\widehat{B_{2}C_{2}C}\\ &=&180^\circ-\widehat{ABC}-\widehat{ABA_{2}}-\widehat{B_{2}BC}\\ &=&180^\circ-\widehat{A_{2}BC}-\widehat{B_{2}AC}\] Therefore $ \widehat{A_{3}C_{3}B_{3}}=\widehat{A_{2}C_{2}B_{2}}$ And similarly for the other angles, we get $ \triangle A_{3}B_{3}C_{3}\sim\triangle A_{2}B_{2}C_{2}$ Source: http://imocompendium.com/phpBB1/viewtopic.php?t=113
03.02.2008 16:11
lemma 1: Let $ P$ be a Miquel point of four line $ l_1,l_2.l_3,l_4$. Simson line of $ P$ wrt triangle that formed by $ l_1,l_2,l_3,l_4$(of course, there are four triangle and four Simson line are coincide) is perpendicular to the Gauss line of $ l_1.l_2,l_3,l_4$. proof) Since Aubert line is perpendicular to the Gauss line(see http://www.mathlinks.ro/Forum/viewtopic.php?t=842), it is suffice to show Simson line is parallel to Aubert line but it is true since Simson line pass midpoint of $ PH_i(i = 1,2,3,4)$ where $ H_i$ is orthocenter of four triangle that formed by four line $ l_1,l_2,l_3,l_4$. lemma 2: Let $ P,Q$ are points on circumcircle of triangle $ ABC$ and $ l_1,l_2$ be Simson line of $ P,Q$ wrt $ \triangle ABC$. Then $ \measuredangle (l_1;l_2) = - \measuredangle PAQ$(directed angle mod 180). proof) Let $ X,Y$ are on circumcircle of triangle $ ABC$ such $ PX\perp BC,QY\perp BC$. It is known that $ AX\parallel l_1,AY\parallel l_2$. Hence $ \measuredangle (l_1;l_2) = \measuredangle XAY = \measuredangle XPY = - \measuredangle PYQ = - \measuredangle PAQ$. In above problem, Let $ X,Y$ be midpoint of $ BB_1,CC_1$ and $ l_1$ be Simson line of $ A_2$ wrt $ \triangle ABC$. By lemma 1, $ l_1\perp XY$.Let $ M$ be midpoint of $ B_1C_1$. Then $ MX = \frac {1}{2}C_1B = \frac {1}{2}AC_3$ and $ MY = \frac {1}{2}AB_3$. Hence triangle $ AC_3B_3$ and $ MXY$ are similar and we obtain $ B_3C_3\parallel XY$ But $ l_1\perp XY$. So $ B_3C_3\perp l_1$. Let $ l_2$ be Simson line of $ B_2$ wrt $ \triangle ABC$. Then we also have, $ l_2\perp C_3A_3$. By lemma 2,$ \measuredangle (l_1,l_2) = - \measuredangle A_2C_2B_2$. But since $ l_1\perp B_3C_3,l_2\perp C_3A_3, \measuredangle (l_1,l_2) = \measuredangle B_3C_3A_3$. Hence $ \measuredangle A_3B_3C_3 = \measuredangle A_2B_2C_2$ and we are done.
Attachments:

11.02.2009 08:45
For convenience, let's call A instead of " Yulhee Nam's solution " Can A be finished solution? I think that she's solution is just a cool Theorem, but It can't cover all of the solution, isn't it?
06.09.2009 07:37
From here, we have two impacts: (1): Given triangle $ ABC$ with circumcenter $ O$. If $ A_1, B_1, C_1$ lie on $ BC, CA, AB$ and $ A_2$ is the reflection of $ A_1$ through midpoint of $ BC$, similar for $ B_2, C_2. M_1, M_2$ is Miquel points of triangle $ ABC$ wrt $ (A_1,B_1,C_1)$ and $ (A_2,B_2,C_2), \angle M_1A_1C = \alpha$ then $ OM_1 = OM_2$ and $ \angle M_1OM_2 = 180^o - \alpha$. (2): Given triangle $ ABC$. A circle $ (O) \cap BC = \{A_1, A_2\}, \cap AC = \{B_1,B_2\}, \cap AB = \{C_1,C_2\}$. Let $ M_1, M_2$ be Miquel points of triangle $ ABC$ wrt $ (A_1,B_1,C_1)$ and $ (A_2,B_2,C_2), \angle M_1A_1C = \alpha$ then $ OM_1 = OM_2$ and $ \angle M_1OM_2 = 180^o - \alpha$. Back to our problem: $ \angle B_2A_2C_2 = \angle B_2AC_2 = \angle B_2AB + \angle BCC_2$ $ = 180^o - \angle B_2BA - \angle BB_2A + \angle A_2M_1C_2 = C + \angle A_2M_1C_2 - \angle C_1M_1B_2$ $ = \angle C + \angle B_2M_1C_2 - \angle C_1M_1A_1 = \angle C + \angle B - 180^o + \angle B_2M_1C_2 = \angle B_2M_1C_2 - \angle A$ On the other side, $ \angle C_2A_3B_3 = \angle BM_2C - \angle A$. So we need to show that $ \angle B_2M_1C_2 = \angle BM_2C (*)$ Let $ AA_2, BB_2, CC_2$ intersect each other and make triangle $ A'B'C', M_1, M_2$ be Miquel points of triangle $ ABC$ wrt $ (A_1,B_1,C_1)$ and $ (A_3,B_3,C_3)$ Put $ \angle M_1A_1C = \alpha$ We have $ \angle M_1B_2B = \angle BC_1M_1 = \angle M_1A_1C = \angle M_1A_2C$ then $ B_2M_1C_2A'$ is cyclic quadrilateral. Similarly we get $ M_1$ is Miquel point of triangle $ A'B'C'$ wrt $ (A_2,B_2,C_2)$ From $ (1): OM_1 = OM_2$ and $ \angle M_1OM_2 = 180^o - \alpha (3)$ Let $ M'_2$ be Miquel point of triangle $ A'B'C'$ wrt $ (A,B,C)$. From $ (2)$ we obtain $ OM_1 = OM'_2$ and $ \angle M_1OM'_2 = 180^o - \angle M_1C_2C = 180^o - \alpha (4)$ From $ (3)$ and $ (4), M'_2\equiv M_2$ so $ M_2$ is Miquel point of triangle $ A'B'C'$ wrt $ (A,B,C)$ $ M_2BA'C$ is cyclic thus $ \angle BM_2C = 180^o - \angle C'A'B' = \angle B_2M_1C_2$. Therefore $ (*)$ is true. We are done!
Attachments:

03.07.2013 00:50
Hello, the result is very ugly. We use complex numbers. Let lowercase letters represent the points. We prove a useful lemma. Lemma 1: If $K$ is the center of spiral similarity sending $AB \rightarrow CD$, the $k = \frac{ad-bc}{a+d-b-c}$. Proof: Note that the conditions imply that $\frac{k-a}{k-b} = \frac{k-c}{k-d}$. Now solving for $k$ gives the desired. By the spiral similarity lemma, $A_2$ sends $B_1C_1 \rightarrow CB$. So $a_2 = \frac{bb_1-cc_1}{b+b_1-c-c_1}$. $b_2, c_2$ are similar. Also, $a_3 = b+c-a_1$, and $b_3, c_3$ are similar. Now, we find the center of spiral similarity (let's name it $K$) sending $A_2A_3 \rightarrow B_2B_3$. By the Lemma, \[ k = \frac{a_2b_3-a_3b_2}{a_2-b_2-(a_3-b_3)} = \frac{\frac{bb_1-cc_1}{b+b_1-c-c_1}(a+c-b_1)-\frac{cc_1-aa_1}{c+c_1-a-a_1}(b+c-a_1)}{\frac{bb_1-cc_1}{b+b_1-c-c_1}-\frac{cc_1-aa_1}{c+c_1-a-a_1}-(b+c-a_1)+(a+c-b_1)} = \frac{\frac{(bb_1-cc_1)(a+c-b_1)(c+c_1-a-a_1)-(cc_1-aa_1)(b+c-a_1)(b+b_1-c-c_1)}{(b+b_1-c-c_1)(c+c_1-a-a_1)}}{\frac{(bb_1-cc_1)(c+c_1-a-a_1)-(cc_1-aa_1)(b+b_1-c-c_1)-(a+a_1-b-b_1)(b+b_1-c-c_1)(c+c_1-a-a_1)}{(b+b_1-c-c_1)(c+c_1-a-a_1)}} = \frac{(bb_1-cc_1)(a+c-b_1)(c+c_1-a-a_1)-(cc_1-aa_1)(b+c-a_1)(b+b_1-c-c_1)}{(bb_1-cc_1)(c+c_1-a-a_1)-(cc_1-aa_1)(b+b_1-c-c_1)-(a+a_1-b-b_1)(b+b_1-c-c_1)(c+c_1-a-a_1)}\] Now we evaluate the numerator and denominator. The numerator is equal to \[ (bb_1-cc_1)(a+c-b_1)(c+c_1-a-a_1)-(cc_1-aa_1)(b+c-a_1)(b+b_1-c-c_1) = \] $(a^2cc_1+ab^2a_1+abb^2_1+abb_1c_1+aca^2_1+aca_1b_1+aa^2_1c_1+bc^2b_1+bca_1c_1+bcc^2_1+ba_1b^2_1+cb_1c^2_1-a^2bb_1-aba^2_1-aba_1c_1-ac^2a_1-acb_1c_1-acc^2_1-aa^2_1b_1-b^2cc_1-bca_1b_1-bcb^2_1-bb^2_1c_1-ca_1c^2_1)$ The denominator is equal to \[(bb_1-cc_1)(c+c_1-a-a_1)-(cc_1-aa_1)(b+b_1-c-c_1)-(a+a_1-b-b_1)(b+b_1-c-c_1)(c+c_1-a-a_1) =\] $(bcb_1+acc_1+aba_1+aa_1b_1+bb_1c_1+ca_1c_1-bcc_1-aca_1-abb_1-ba_1b_1-cb_1c_1-aa_1c_1)-(a+a_1-b-b_1)(b+b_1-c-c_1)(c+c_1-a-a_1)$. Now since the numerator and denominator are both equal under the cyclic rotation $a \rightarrow b \rightarrow c \rightarrow a$ and $a_1 \rightarrow b_1 \rightarrow c_1 \rightarrow a_1$, this same spiral similarity sends $B_2B_3 \rightarrow C_2C_3 \rightarrow A_2A_3 \implies \triangle A_2B_2C_2 \sim \triangle A_3B_3C_3$. Note 1: This looks horrible, but it took less that 30 minutes to bash out (especially because there were no conjugations required). Note 2: In fact, this proved a stronger statement. (I never used the fact that $A_1$ lied on $BC$ completely, only for the spiral similarity part.) The stronger statement follows. Let $A_1, B_1, C_1$ be points in the plane. Let $A_2, B_2, C_2$ be the centers of spiral similarity sending $B_1C_1 \rightarrow CB$, etc. Let $A_3, B_3, C_3$ be the reflections of $A_1, B_1, C_1$ over the midpoints of $BC, AC, AB$. Show that $\triangle A_2B_2C_2 \sim \triangle A_3B_3C_3$. It would be interesting to see a synthetic proof of this. Edit: I was being stupid. It suffices to show that \[\frac{a_3-b_3}{a_3-c_3} = \frac{a_2-b_2}{a_2-c_2}\], and this is much easier to compute than what I did.
25.11.2013 15:32
Usually, I dont post on old problems, but I feel some sort of victory. At first, I read it as $A_3$ is the symmetric of $A_2$... $3$ hours later I then see its not that... 5 minutes later I come up with this solution. Note that by length relations we spiral similarity + equal angle at $A$ we get $AC_3B_3 \sim BA_2C \implies \angle B_3C_3A = \angle A_2BC$. Similarly, one gets $\angle A_3C_3B = \angle B_2AC$. Hence, $\angle A_3C_3B_3 = 180 - (\angle B_2AC + \angle A_2BC) = \angle A_2C_2B_2$.
14.11.2014 06:16
It is not hard to see that $\triangle{BC_1A_2} \sim \triangle{CB_1A_2}$ so we get $\frac{A_2C_1}{A_2B_1}=\frac{BC_1}{CB_1}=\frac{AC_3}{AB_3}$.We also have $\angle{C_3AB_3}=\angle{C_1A_2B_1}$.So $\triangle{AB_3C_3} \sim \triangle{A_2B_1C_1}$.Likewise we also get $\triangle{BA_3C_3} \sim \triangle{B_2A_1C_1},\triangle{CA_3B_3} \sim \triangle{C_2A_3B_3}$.So now by easy angle chasing we get that $AA_2,BB_2,CC_2$ are tangent to the circumcircles of $\triangle{AB_3C_3},\triangle{BA_3C_3}$ and $\triangle{CA_3B_3}$ respectively.Let $\angle{AB_3C_3}=x,\angle{BC_3A_3}=y,\angle{CA_3B_3}=z$.Now simple angle chasing gives $\angle{A_3}=B+y-z,\angle{B_3}=C+z-x$.Also note that $\angle{B_2A_2C_2}=\angle{AA_2C_2}-\angle{AA_2B_2}=180-z-(180-B-y)=B+y-z$.Analogously $\angle{A_2B_2C_2}=C+z-x$.So $\triangle{A_3B_3C_3} \sim \triangle{A_2B_2C_2}$ as desired.
13.05.2015 23:59
We use complex numbers. $A_2$ is the spiral similarity center mapping $B_1C_1$ to $CB$, so \begin{align*} \frac{a_2-b_1}{a_2-c_1}&=\frac{a_2-c}{a_2-b}\\ \implies a_2&=\frac{bb_1-cc_1}{b+b_1-c-c_1} \end{align*} Using the fact that directly similar triangles have a spiral similarity center common to each pair of sides, we get that two triangles $PQR$ and $XYZ$ are directly similar iff \[ p(y-z)+q(z-x)+r(x-y)=0 \] Note that \[ b_3-c_3=(a+c-b_1)-(a+b-c_1)=c+c_1-b-b_1 \] so plugging in $PQR=A_2B_2C_2$ and $XYZ=A_3B_3C_3$ yields \[ cc_1-bb_1+aa_1-cc_1+bb_1-aa_1=0 \] giving that the triangles are indeed similar.
14.05.2015 00:15
:O Wow pi37, I that you said you don't bash!
16.01.2017 09:24
sayantanchakraborty wrote: So now by easy angle chasing we get that $AA_2,BB_2,CC_2$ are tangent to the circumcircles of $\triangle{AB_3C_3},\triangle{BA_3C_3}$ and $\triangle{CA_3B_3}$ respectively. can u explain it. i cant see.
30.04.2017 04:44
Very similar to pi37's solution, but with a less elegant finish. We use complex numbers. Let $a$, $b$ and $c$ correspond to points on $A$, $B$ and $C$ respectively. By considering the spiral similarity with center $A_2$ mapping $B_1C_1$ to $CB$, we calculate that $$a_2=\frac{bb_1-cc_1}{b+b_1-c-c_1}$$By exploiting symmetry, we find that $$a_2=\frac{bb_1-cc_1}{b+b_1-c-c_1}\;\;\;\;b_2=\frac{cc_1-aa_1}{c+c_1-a-a_1}\;\;\;\;c_2=\frac{aa_1-bb_1}{a+a_1-b-b_1}$$Since $a_3$, $b_3$ and $c_3$ are reflections of $a_1$, $b_1$ and $c_1$ over the midpoints of $BC$, $AC$ and $AB$ respectively, we compute $$a_3=b+c-a_1\;\;\;\;b_3=a+c-b_1\;\;\;\;c_3=a+b-c_1\;\;\;$$Now it suffices to show that $$\frac{a_2-b_2}{a_2-c_2}=\frac{a_3-b_3}{a_3-c_3}$$Expanding the right hand side, and simplifying, we obtain $$\frac{a_2-b_2}{a_2-c_2}=\frac{\frac{aa_1(b+b_1-c-c_1)+bb_1(c+c_1-a-a_1)+cc_1(a+a_1-b-b_1)}{(b+b_1-c-c_1)(c+c_1-a-a_1)}}{\frac{aa_1(c+c_1-b-b_1)+bb_1(a+a_1-c-c_1)+cc_1(b+b_1-a-a_1)}{(b+b_1-c-c_1)(a+a_1-b-b_1)}}=\frac{b+b_1-a-a_1}{c+c_1-a-a_1}$$Expanding the left hand side, we easily obtain $$\frac{a_3-b_3}{a_3-c_3}=\frac{b+b_1-a-a_1}{c+c_1-a-a_1}$$Implying that$ \triangle{A_2B_2C_2} \sim \triangle{A_3B_3C_3}$, as desired. $\square$
14.02.2018 11:44
We use complex numbers. Easy way to look, $A_3$ is reflection of $A_1$ over midpoint of $BC$, so $$a_3=b+c-a_1$$and symmetrically we can find $b_3, c_3$. As $A_2$ is spiral similarity center mapping $\Delta B_1C_1A_2$ to $\Delta CBA_2$, $$a_2=\frac{bb_1-cc_1}{b+b_1-c-c_1}$$and symmetrically we can find $b_2, c_2$. We now compute determinant to verify similarity. $$\left \lvert \begin{array}{ccc} a_2 & a_3 &1 \\ b_2 &b_3&1 \\ c_2 &c_3 &1 \\ \end{array} \right \rvert =\left \lvert \begin{array}{ccc} \frac{bb_1-cc_1}{b+b_1-c-c_1}&b+c-a_1&1 \\ \frac{cc_1-aa_1}{c+c_1-a-a_1}&a+c-b_1&1 \\ \frac{aa_1-bb_1}{a+a_1-b-b_1}&a+b-c_1&1 \\ \end{array} \right \rvert =-\left \lvert \begin{array}{ccc}\frac{bb_1-cc_1}{b+b_1-c-c_1}&a+a_1&1 \\ \frac{cc_1-aa_1}{c+c_1-a-a_1}&b+b_1&1 \\ \frac{aa_1-bb_1}{a+a_1-b-b_1}&c+c_1&1 \\ \end{array} \right \rvert$$This determinant is equal to $$ -\sum_{cyc} \left(\frac{bb_1-cc_1}{b+b_1-c-c_1} \right)(b+b_1-c-c_1)=-\sum_{cyc} bb_1-cc_1=0$$Hence triangles are similar, as desired. $\blacksquare$
29.06.2018 18:12
I made funny diagram!!
25.09.2021 19:11
Since $A_2$ is the Miquel Point of $BCB_1C_1$, we know $A_2BC_1 \sim A_2CB_1$. Hence, we know $$\frac{AB_3}{AC_3} = \frac{CB_1}{BC_1} = \frac{A_2C}{A_2B}.$$But $$\angle B_3AC_3 = \angle CAB = \angle CA_2B$$so $AB_3C_3 \sim A_2CB$ by SAS. Analogously, we conclude $BC_3A_3 \sim B_2AC$ and $CA_3B_3 \sim C_2BA$. Now, it's easy to see $$\angle C_3A_3B_3 = 180^{\circ} - \angle B_3A_3C - \angle C_3A_3B = 180^{\circ} - \angle ABC_2 - \angle ACB_2$$$$= \angle AA_2C_2 - \angle AA_2B_2 = \angle C_2A_2B_2.$$By symmetry, we conclude $A_2B_2C_2 \sim A_3B_3C_3$ as desired. $\blacksquare$ Random Properties: Let $AK$ meet $(ABC)$ again at $K_a$. Then, $A_2KK_a \sim A_2C_1B \sim A_2B_1C$. Let $l_a$ denote the tangent to $(AB_1C_1)$ at $A$. If $l_a$ meets $(ABC)$ again at $A_4$, then $A_2AA_4 \sim A_2KK_a \sim A_2C_1B \sim A_2B_1C$. The main idea behind this problem is realizing $A_3, B_3, C_3$ are only attached to length conditions. This motivates us to compute $\frac{AB_3}{AC_3} = \frac{CB_1}{BC_1}$ in order to take advantage of symmetry. But the second ratio is connected to $A_2BC_1 \sim A_2CB_1$, and the rest follows easily.
Attachments:

30.10.2021 22:15
First G9!yee ,literally took me no hints if I didn't stupidly rolled over the pages.
05.11.2021 19:28
Claim: $\triangle AB_3C_3\stackrel{+}{\sim} \triangle A_2B_1C_1.$ We use composition of symmetry wrt midpoint of $AC,$ of spiral similarity $B_1C\mapsto C_1B$ and of symmetry wrt midpoint of $AB.$ Clearly it's a spiral similarity $AB_3\mapsto AC_3,$ and it has same rotation and ratio as $A_2B_1C\mapsto A_2C_1B,$ thus the conclusion $\Box$ Using claim and analogous assertions, we obtain $$\measuredangle A_2B_2C_2=\measuredangle A_2BC_2=\measuredangle A_2AC_1+\measuredangle A_1CC_2=\measuredangle A_2B_1C_1+\measuredangle A_1B_1C_2=\measuredangle AB_3C_3+\measuredangle A_3B_3C=\measuredangle A_3B_3C_3.$$This and analogous equalities yield the desired result.
19.08.2022 07:14
6.18 is weird. spent about an hour trying to bash out a2 using cyclic cond and just found 6.18 and facepalmed so hard i fell out of my chair. incidentally 618 is an important number...
$\square$
17.06.2023 20:19
All right, I see so many complex bash solutions on this, but where is @hukilau17? Someone please call bro up to do the heavenly task.
18.06.2023 18:25
I don't know why you want to see this, but here you go.
31.07.2023 18:56
The main claim is that $\triangle AB_3C_3 \sim \triangle A_2B_1C_1$; this is by SAS as $\angle BAC = \angle C_1A_2B_1$ and $$\frac{AB_2}{AC_3} = \frac{CB_1}{BC_1} = \frac{A_2C_1}{A_2B_1}$$by spiral similarity. Then the rest is a quick angle chase to find $$\angle B_3C_3C_3 = 180^\circ - \angle B_2CA - \angle C_2BA = 180^\circ - \frac 12 \widehat{AB_2} - \frac 12 \widehat{AC_2} = \frac 12 \widehat{B_2C_2} = \angle B_2A_2C_2,$$as requested.
03.08.2023 04:19
We focus on $A_2$ and A, because the other cyclic variants follow. Note that there is a spiral similarity at $A_2$ mapping $B_1C$ to $BC_1$. Then $$\frac{A_2C}{AB_3}=\frac{A_2B}{AC_3}\iff \triangle C_3AB_3\sim\triangle BA_2C.$$Analogously, $\triangle A_3BC_3\sim\triangle CB_2A$, $\triangle B_3CA_3\sim\triangle AC_2B$, we get $$\angle A_3B_3C_3=180-C_3B_3A-A_3B_3C=180-BCA_2-BAC_2=\angle BAA_2-\angle BAC_2=\angle A_2AC_2=\angle A_2B_2C_2,$$and analogous results finishes it. $\blacksquare$ great problem, misplaced for g9 cuz imo that g4 this year was BRUTAL compared to g1-3 which were decently trivial (seems too complicated so im not doing it )
09.08.2023 20:04
That was the most insane spiral problem I've ever done. (*cough* probably because I haven't done that many) Lemma: $\triangle AC_3B_3 \sim \triangle A_2BC$, and likewise for its cyclic variants. This is the critical claim. Proof: $A_2$ is the spiral center from $C_1B_1 \mapsto BC$, and $C_1B \mapsto B_1C$. We can also easily see that $\angle BA_2C = \angle BAC$. Then, $$ \frac{A_2B}{A_2C} = \frac{\frac{A_2C}{BC_2} \cdot BC_1}{\frac{A_2C}{CB_1} \cdot CB_1} = \frac{BC_1}{CB_1} = \frac{AC_3}{AB_3} $$By spiral similarity. We can also repeat this same process for the cyclic variants. By SAS, Lemma is proved. $\Box$ We finish with an angle chase, using Lemma to help us with the angles: \begin{align*} \angle B_2A_2C_2 &= \angle B_2A_2A - \angle AA_2C_2 \\ &= (180^\circ - \angle B_2CA) - \angle ABC_2 \\ &= 180^\circ - (\angle B_2CA + \angle ABC_2) \\ &= 180^\circ - (\angle BA_3C_3 + \angle B_3A_3C) \\ &= 180^\circ - (180^\circ - \angle C_3A_3B_3) \\ \angle B_2A_2C_2 &= \angle C_3A_3B_3 \end{align*}We can repeat the same process for the cyclic variants of $\angle B_2A_2C_2$, and we are done. $\blacksquare$
19.09.2023 02:22
We focus on A_2 and A, because the other cyclic variants follow. Note that there is a spiral similarity at A_2 mapping B_1C to BC_1. Then \frac{A_2C}{AB_3}=\frac{A_2B}{AC_3}\iff \triangle C_3AB_3\sim\triangle BA_2C. Analogously, \triangle A_3BC_3\sim\triangle CB_2A,\triangle B_3CA_3\sim\triangle AC_2B, we get \angle A_3B_3C_3=180-C_3B_3A-A_3B_3C=180-BCA_2-BAC_2=\angle BAA_2-\angle BAC_2=\angle A_2AC_2=\angle A_2B_2C_2, and analogous results finishes it.
16.12.2023 17:33
Imagine not complecks bash this tho. Sid03 sar motivated me not to :prayge: . (Bro headsolved the problem ) [asy][asy] /* Converted from GeoGebra by User:Azjps using Evan's magic cleaner https://github.com/vEnhance/dotfiles/blob/main/py-scripts/export-ggb-clean-asy.py */ /* A few re-additions are done using bubu-asy.py. This adds the dps, xmin, linewidth, fontsize and directions. */ pair A = (-91.53138,70.81505); pair B = (-110.35458,-31.32483); pair C = (7.06804,-31.32483); pair A_1 = (-79.20200,-31.32483); pair B_1 = (-54.54733,32.50300); pair C_1 = (-99.88684,25.47601); pair A_3 = (-24.08453,-31.32483); pair B_3 = (-29.91600,6.98722); pair C_3 = (-101.99912,14.01421); pair A_2 = (-102.39840,61.97874); pair B_2 = (-123.65121,5.70195); pair C_2 = (-31.45935,-58.63911); import graph; size(12cm); pen dps = linewidth(0.5) + fontsize(13); defaultpen(dps); real xmin = -5, xmax = 5, ymin = -5, ymax = 5; draw(A_2--B_2--C_2--cycle, linewidth(0.5) + blue); draw(A_3--B_3--C_3--cycle, linewidth(0.5) + blue); draw(A--B, linewidth(0.5)); draw(B--C, linewidth(0.5)); draw(C--A, linewidth(0.5)); draw(circle((-51.64327,10.65974), 72.17841), linewidth(0.5)); draw(circle((-79.72959,45.20069), 28.20244), linewidth(0.5)); draw(circle((-94.77829,-4.83039), 30.73395), linewidth(0.5)); draw(circle((-36.06698,-11.31095), 47.55192), linewidth(0.5)); draw(A_2--B_2, linewidth(0.5) + blue); draw(B_2--C_2, linewidth(0.5) + blue); draw(C_2--A_2, linewidth(0.5) + blue); draw(A_3--B_3, linewidth(0.5) + blue); draw(B_3--C_3, linewidth(0.5) + blue); draw(C_3--A_3, linewidth(0.5) + blue); dot("$A$", A, NW); dot("$B$", B, SW); dot("$C$", C, SE); dot("$A_1$", A_1, S); dot("$B_1$", B_1, NE); dot("$C_1$", C_1, W); dot("$A_3$", A_3, SE); dot("$B_3$", B_3, NE); dot("$C_3$", C_3, NW); dot("$A_2$", A_2, NW); dot("$B_2$", B_2, W); dot("$C_2$", C_2, SE); [/asy][/asy] First note that clearly $A_2$ is the center of spiral similarity mapping $\overline{C_1B_1}\mapsto \overline{BC}$ and thus also the center of spiral similarity mapping $\overline{C_1B}\mapsto \overline{B_1C}$. Now note that $\measuredangle C_3AB_3=\measuredangle BAC=\measuredangle BA_2C$. Also note that $\dfrac{C_3A}{B_3A}=\dfrac{BC_1}{CB_1}\overset{\text{Spiral Sim}}{=}\dfrac{BA_2}{CA_2}$ which gives us that $\triangle AC_3B_3 \overset{+}{\sim}\triangle A_2BC$. This further gives us that $\measuredangle AC_3B_3=\measuredangle A_2BC$. In a similar logic, we also get that $\measuredangle BC_3A_3 = \measuredangle B_2AC$. Now to finish, note that, \begin{align*} \measuredangle B_3C_3A_3 &= \measuredangle B_3C_3A + \measuredangle BC_3A_3\\ &= \measuredangle CBA_2 + \measuredangle B_2AC\\ &= \measuredangle (CBA + \measuredangle ABA_2) + (\measuredangle B_2AB + \measuredangle BAC)\\ &= \measuredangle (CBA + \measuredangle BAC) + (\measuredangle ABA_2 + \measuredangle B_2AB)\\ &= \measuredangle BCA + (\measuredangle ACA_2 + \measuredangle B_2CB)\\ &= \measuredangle BCA - (\measuredangle A_2CA + \measuredangle BCB_2)\\ &= \measuredangle B_2CA_2\\ &= \measuredangle B_2C_2A_2 .\end{align*} This finally gives us $\measuredangle B_3C_3A_3 = \measuredangle B_2C_2A_2$ and similarly we also get that $\measuredangle C_3A_3B_3 = \measuredangle C_2A_2B_2$. Combining these two, we get $\triangle A_3B_3C_3 \overset{+}{\sim}\triangle A_2B_2C_2$ and we are done.
16.12.2023 20:55
Let the circumcircle of $ABC$ be the complex unit circle. Then if we let the lowercase letters represent their respective points translated onto the complex plane, we obtain that as $A_2, B_2, C_2$ are the second intersection points of circles $(AB_1C_1)$ and $(ABC)$ that \[a_2 = \frac{bb_1 - cc_1}{b + b_1 - c - c_1}; \phantom{e} b_2 = \frac{cc_1 - aa_1}{c + c_1 - a - a_1}; \phantom{e} c_2 = \frac{aa_1 - bb_1}{a + a_1 - b - b_1},\]and also \[a_3 = b + c - a_1; \phantom{e} b_3 = c + a - b_1; \phantom{e} c_3 = a + b - c_1.\]Now in order to show $\triangle A_2B_2C_2 \sim \triangle A_3B_3C_3$, it suffices to equivalently show $\frac{a_2 - b_2}{a_2 - c_2} = \frac{a_3 - b_3}{a_3 - c_3}$: \[\frac{a_2 - b_2}{a_2 - c_2} = \frac{\frac{bb_1 - cc_1}{b + b_1 - c - c_1} - \frac{cc_1 - aa_1}{c + c_1 - a - a_1}}{\frac{bb_1 - cc_1}{b + b_1 - c - c_1} - \frac{aa_1 - bb_1}{a + a_1 - b - b_1}} = \frac{\frac{aa_1(b + b_1 - c - c_1) + bb_1(c + c_1 - a - a_1) + cc_1(a + a_1 - b - b_1)}{(c + c_1 - a - a_1)}}{\frac{aa_1(c + c_1 - b - b_1) + bb_1(a + a_1 - c - c_1) + cc_1(b + b_1 - a - a_1)}{(a + a_1 - b - b_1)}} = \frac{b + b_1 - a - a_1}{c + c_1 - a - a_1}, \]which is also precisely $(a_3 - b_3)/(a_3 - c_3)$, as was needed to show. $\blacksquare$
04.02.2024 07:50
We claim that $\triangle C_2AB \sim \triangle C_2A_1B_1 \sim \triangle CA_3B_3$. The first two just comes from spiral similarity, and we have the third from $\angle A_3CB_3 = \angle ACB$ and the similarity ratio \[\frac{CA_3}{CB_3} = \frac{BA_1}{AB_1} = \frac{C_2A}{C_2B}.\] Thus we get our desired similarity from \begin{align*} \measuredangle A_3C_3B_3 &= \measuredangle A_3C_3A + \measuredangle AC_3B_3 \\ &= \measuredangle A_1C_1B_2 + \measuredangle A_2C_1B_1 \\ &= \measuredangle A_1BB_2 + \measuredangle A_2AB_1 \\ &= \measuredangle CC_2B_2 + \measuredangle A_2C_2C \\ &= \measuredangle A_2C_2B_2. \quad \blacksquare \end{align*}
10.05.2024 06:16
The key claim is the following. Claim: $$\triangle AC_3B_3\sim\triangle A_2BC$$and symmetric variants. Note that clearly $\angle BA_2C=\angle C_3AB_3$ as $ABCA_2$ is cyclic. Furthermore, since $A_2$ is the center of spiral similarity taking $BC_1$ to $CB_1$, we have $$\frac{A_2B}{A_2C}=\frac{BC_1}{CB_1}=\frac{AC_3}{AB_3},$$as desired. Thihs means that $\angle BA_3C_3=\angle B_2CA$ and $\angle CA_3B_3=\angle C_2BA$. Note that the former angle is inscribed in arc $B_2A$, and the latter in arc $C_2A$. Thus, $\angle C_3A_3B_3=180-\angle B_2CA-\angle C_2BA$ is inscribed in arc $B_2C_2$, and thus $\angle C_3A_3B_3=\angle C_2A_2B_2$, and symmetric variants, as desired. remark: this problem illustrates several things very well. First of all, the main idea here is really the usage of a spiral similarity to "move" length ratios. The spiral similarity allows us to move the ratio $\frac{A_2B}{A_2C}$ "onto the triangle". And "length flipping" shows up once again. After moving the ratio with a spiral similarity, it was then "flipped" using the isotomic condition in order to include vertex $A$, which is good since at this point we are only analyzing the $A$-centered version. This length ratio flipping directly induces the similar triangles there led to this solution. remark 2: oh wait, complex bash also works :flushed: as $A_2$ and $A_3$ can both be computed relatively easily in terms of $A_1,B_1,C_1$ (the former using spiral center and the latter just by reflecting).
11.06.2024 23:20
Note that $A_2$ is the center of the spiral similarity taking $B_1C_1$ to $CB$. Therefore, $\angle BA_2C=\angle C_3AB_3$ and \[\frac{A_2C}{A_2B}=\frac{B_1C}{C_1B}=\frac{AB_3}{AC_3}\]which implies $\triangle BA_2C\sim \triangle C_3AB_3$. Thus, $\angle C_3B_3A=\angle BCA_2=\angle BC_2A_2$. Similarly, $\angle A_3B_3C=\angle BA_2C_2$ and so $\angle A_3B_3C_3=\angle A_2BC_2=\angle A_2B_2C_2$. Considering analogous finishes.