Problem

Source: China Mathematical Olympiad 2018 Q1

Tags: number theory, relatively prime, greatest common divisor, inequalities



Let $n$ be a positive integer. Let $A_n$ denote the set of primes $p$ such that there exists positive integers $a,b$ satisfying $$\frac{a+b}{p} \text{ and } \frac{a^n + b^n}{p^2}$$are both integers that are relatively prime to $p$. If $A_n$ is finite, let $f(n)$ denote $|A_n|$. a) Prove that $A_n$ is finite if and only if $n \not = 2$. b) Let $m,k$ be odd positive integers and let $d$ be their gcd. Show that $$f(d) \leq f(k) + f(m) - f(km) \leq 2 f(d).$$