Problem

Source: Central American Olympiad 2007, Problem 3

Tags: quadratics, algebra, polynomial, algebra proposed



Let $S$ be a finite set of integers. Suppose that for every two different elements of $S$, $p$ and $q$, there exist not necessarily distinct integers $a \neq 0$, $b$, $c$ belonging to $S$, such that $p$ and $q$ are the roots of the polynomial $ax^{2}+bx+c$. Determine the maximum number of elements that $S$ can have.